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Introduction

The modern probability theory is an interesting and most important part of mathematics,
which has great achievements and close connections both with classical parts of mathe-
matics ( geometry, mathematical analysis, functional analysis), and its various branches(
theory of random processes, theory of ergodicity, theory of dynamical system, mathemat-
ical statistics and so on). The development of these branches of mathematics is mainly
connected with the problems of statistical mechanics, statistical physics, statistical radio
engineering and also with the problems of complicated systems which consider the random
and the chaotic influence. At the origin of the probability theory were standing such fa-
mous mathematicians as I.Bernoulli, P.Laplace, S.Poisson, A.Cauchy, G.Cantor, F.Borel,
A.Lebesgue and others. A very controversial problem connected with the relation between
the probability theory and mathematics was entered in the list of unsolved mathematical
problems raised by D.Gilbert in 1900. This problem has been solved by Russian math-
ematician A.Kolmogorov in 1933 who gave us a strict axiomatic basis of the probability
theory. A.Kolmogorov conception to the basis of the probability theory is applied in the
present book. Giving a strong system of axioms (according to A.Kolmogorov) the general
probability spaces and their cóomposite compónents are described in the present book. The
main purpose of the present book is to help students to acquire such skills that are necessary
to construct mathematical models (i.e., probability spaces) of various (social, economical,
biological, mechanical, physical, etc) processes and to calculate their numerical character-
istics. In this sense the last chapters ( in particular, chapters 14-15) are of interest, where
some applications of various mathematical models( Markov chains, Brownian motion, etc)
are presented. The present book consists of twenty one chapters. More of chapters are
equipped with exercises (i.e. tests), the solutions of which will help the student in deep
comprehend and assimilation of experience of the presented elements of probability theory
and mathematical statistics.





Chapter 1

Set-Theoretical Operations.
Kolmogorov Axioms

Let Ω be a non-empty set and let P (Ω) be a class of all subsets of Ω. ( P (Ω) is called a
powerset of Ω).

Definition 1.1 Let, Ak ∈ P (Ω) (1 ≤ k ≤ n). An union of the finite family of subsets
(Ak)1≤k≤n is denoted by ∪n

k=1Ak and is defined by

∪n
k=1Ak = {x|x ∈ A1

∨
· · ·

∨
x ∈ An},

where
∨

denotes the symbol of conjunction.

Definition 1.2 Let Ak ∈ P (Ω) (k ∈ N). An union of the countable family of subsets
(Ak)k∈N is denoted by ∪k∈NAk and is defined by

∪k∈NAk = {x|x ∈ A1
∨

x ∈ A2
∨

· · ·}.

Definition 1.3 Let Ak ∈ P (Ω) (1 ≤ k ≤ n). An intersection of the finite family of subsets

(Ak)1≤k≤n is denoted by the symbol ∩n
k=1Ak and is defined by

∩n
k=1Ak = {x|x ∈ A1

∧
· · ·

∧
x ∈ An},

where
∧

denotes the symbol of disjunction.

Definition 1.4. Let Ak ∈ P (Ω) (k ∈ N). An intersection of the countable family of subsets
(Ak)k∈N is denoted by the symbol ∩k∈NAk and is defined by

∩k∈NAk = {x|x ∈ A1
∧

x ∈ A2
∧

· · ·}.

Definition 1.5. Let A,B ∈ P (Ω). A difference of subsets A and B is denoted by the symbol

1
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A\B and is defined by
A\B = {x|x ∈ A

∧
x /∈ B}.

Remark 1.1 De-Morgan’s formulas are central for the theory of probability :
1) Ω\∪n

k=1Ak = ∩n
k=1(Ω\Ak);

2) Ω\∪k∈NAk = ∩k∈N(Ω\Ak);
3) Ω\∩n

k=1Ak = ∪n
k=1(Ω\Ak);

4) Ω\∩k∈NAk = ∪k∈N(Ω\Ak).

Definition 1.6. A class A of subsets Ω is called an algebra if the following conditions are
satisfying :

1) Ω ∈ A ;
2) If A,B ∈ A , then A∪B ∈ A and A∩B ∈ A ;
3) If A ∈ A , then Ω\A ∈ A .

Remark 1.2. In the condition 2) it is sufficient to require only the validity A∪B ∈ A or
A∩B ∈ A , because applying Remark 1.1, the following set-theoretical equalities are true:

A∪B = Ω\ ((Ω\A)∩ (Ω\B)),

A∩B = Ω\ ((Ω\A)∪ (Ω\B)).

Remark 1.3 The algebra is such class of subsets of Ω which is closed under finite number
of set-theoretical operations ” ∩,∪,\ ” .

Definition 1.7. A class F of subsets of Ω is called σ-algebra if :
1) Ω ∈ F ;
2) If Ak ∈ F (k ∈ N) , then ∪k∈NAk ∈ F and ∩k∈NAk ∈ F ;
3) If A ∈ F , then Ω\A ∈ F .

Remark 1.4 The σ-algebra is such class of subsets of Ω which is closed under countable
number of set-theoretical operations ” ∩,∪,\ ” .

Definition 1. 8. A real-valued function P defined on the σ-algebra F of subsets of Ω is
called a probability, if:

1) For arbitrary A ∈ F we have P(A)≥ 0 ( The property of the non-negativity );
2) P(Ω) = 1 ( The property of the normality );
3) If (Ak)k∈N is pairwise disjoint family of elements F then P(∪k∈NAk) =

∑k∈N P(Ak) ( The property of countable-additivity).

Kolmogorov1axioms.The triplet (Ω,F ,P), where

1Andrey Kolmogorov [12(25).4.1903 Tambov-25.10.1987 Moscow] Russian mathematician, Academician
of the Academy Sciences of the USSR (1939), Professor of the Moscow State University. He has firstly con-
sidered a mathematical conception of the axiomatical foundation of the probability theory in 1933.



Set-Theoretical Operations. Kolmogorov Axioms 3

1) Ω is a non-empty set,
2) F is a σ-algebra of subsets of Ω,
3) P is a probability defined on F , is called a probability space.
Ω is called a space of all elementary events; An arbitrary point ω ∈ Ω is called el-

ementary event; An arbitrary element of F is called an event; /0 is called an impossible
event; Ω is called a necessary event; For arbitrary event A an event A = Ω\A is called its
complementary event ; The product of events A and B is denoted by AB and is defined
by A∩B; The events A and B are called non-consistent if the event AB is an impossible
event; A sum of two non-consistent events A and B is denoted by A+B and is defined
by A∪B ; For arbitrary event A the number P(A) is called a probability of the event A .

Definition 1.9 A sum of pairwise disjoint events (Ak)k∈N is denoted by the symbol ∑k∈N Ak
and is defined by

∑
k∈N

Ak = ∪k∈NAk.

Remark 1.4 Like the numerical operations of sums and product, the set theoretical opera-
tions have the following properties:

1) A+B = B+A, AB = BA,
2) (A+B)+C = A+(B+C),(AB)C = A(BC),
3) (A+B)C = AC+BC, C(A+B) =CA+CB,
4) C(∑k∈N Ak) = ∑k∈N CAk,
5) (∑k∈N Ak)C = ∑k∈N AkC.

Tests

1.1.Assume that Ak = [ k+1
k+2 ,1] (k ∈ N). Then

1) ∩4≤k≤10Ak coincides with
a) [1

2 ,1], b) ]11
12 ,1], c) [11

12 ,1], d) [1
2 ,1];

2) ∪3≤k≤10Ak coincides with
a) [4

5 ,1], b) [3
4 ,1], c) [2

3 ,1], d) [5
6 ,1];

3) ∪2≤k≤10Ak \∩1≤k≤10Ak coincides with
a) [3

4 ,
11
12 [, b) [4

5 ,
12
13 [, c) [4

5 ,1[, d) [5
6 ,1[;

4) ∩k∈NAk coincides with
a) {1}, b) {0}, c) { /0}, d) [0,1];

5) ∪k∈NAk coincides with
a) [4

5 ,1], b) [3
4 ,1], c) [2

3 ,1], d) [5
6 ,1];

6) ∪k∈NAk \∩k∈NAk coincides with
a) [3

4 ,1[, b) [2
3 ,1[, c) [4

5 ,1[, d) [5
6 ,1[.

1.2. Assume that Ak = [ k−3
3k , 2k+3

3k ] (k ∈ N). Then
1) ∩5≤k≤10Ak coincides with

a) [ 8
33 ,

25
33 ], b) [ 7

30 ,
23
30 ], c) [ 2

15 ,
13
15 ], d) [ 1

12 ,
11
12 ];

2) ∪10≤k≤20Ak coincides with
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a) [ 8
33 ,

25
33 ], b) [ 7

30 ,
23
30 ], c) [ 2

15 ,
13
15 ], d) [ 1

12 ,
11
12 ];

3) ∩k∈NAk coincides with
a) [ 8

33 ,
25
33 ], b) [1

3 ,
3
4 ], c) [1

3 ,
2
3 ], d) [ 1

12 ,
11
12 ];

4) [0,1]\∩k∈NAk coincides with
a) [0,1]\ [0, 1

3 ]∪]
3
4 ;1[, b) [0, 1

3∪]
3
4∪]

3
4 ;1[, c) [1

3 ,
2
3 ], d) [ 1

12 ,
11
12 ].

1.3∗. Let θ be a positive number such that θ
π is an irrational number. We set

∆ = {(x,y)|−1 < x < 1, −1 < y < 1}.

Let denote by An a set obtained by counterclockwise rotation of the set ∆ about the origin
of the plane for the angle nθ. Then

1) ∩k∈NAk coincides with
a) {(x,y)|x2 + y2 ≤ 1}, b) {(x,y)|x2 + y2 ≤ 2},
c) {(x,y)|x2 + y2 < 1}, d) {(x,y)|x2 + y2 < 2};

2) ∪k∈NAk coincides with
a) {(x,y)|x2 + y2 ≤ 1}, b) {(x,y)|x2 + y2 ≤ 2},
c) {(x,y)|x2 + y2 < 1}, d) {(x,y)|x2 + y2 < 2}.

1.4. Suppose that Ω = {0;1}.
1) The algebra of subsets of Ω is

a) {{0},{0;1}}, b) {{0};{0;1}; /0},
c) {{0};{1};{0;1}; /0}; d) {{1},{0;1}};

2) The σ-algebra of subsets of Ω is
a) {{0},{0;1}}, b) {{0};{0;1}; /0},

c) {{0};{1};{0;1}; /0}; d) {{1},{0;1}}.

1.5. Assume that Ω = [0,1[.
Then
1) the algebra of subsets of Ω is
a) {X |X ⊂ [0,1[, X is presented by the finite union of intervals open from the right and

closed from the right},
b) {X |X ⊂ [0,1[, X is presented by the finite union of intervals closed from the right

and open from the right},
c) {X |X ⊂ [0,1[, X is presented by the finite union of closed from both side intervals

},
d) {X |X ⊂ [0,1[, X is presented by the finite union of open from both side intervals };

2) Suppose that A = {X |X ⊂ [0,1[ and X be presented as the finite union of intervals
open from the right and closed from the left }. Then A

a) is not the algebra,
b) is the σ-algebra,
c) is the σ-algebra, but is not the algebra,
d) is the algebra, but is not the σ-algebra.



Chapter 2

Properties of Probabilities

Let (Ω,F ,P) be a probability space. Then the probability P has the following properties.

Property 2.1 P( /0) = 0.

Proof. We have /0= /0∪ /0∪·· · . From the property of countable-additivity of the probability
P, we have

P( /0) = lim
n→∞

nP( /0).

Since P is finite, P( /0) ∈ R. Hence, above-mentioned equality is possible if and only if
P( /0) = 0.

Property 2.2 (The property of the finite-additivity). If (Ak)1≤k≤n is a finite family of pair-
wise disjoint events, then

P(∪n
k=1Ak) =

n

∑
k=1

P(Ak).

Proof. For arbitrary natural number k > n we set Ak = /0. Following Property 2.1 and the
property of the countable-additivity of P we have

P(∪n
k=1Ak) = P(∪∞

k=1Ak) =
∞

∑
k=1

P(Ak) =
n

∑
k=1

P(Ak)+
∞

∑
k=n+1

P(Ak) =
n

∑
k=1

P(Ak).

Property 2.3. For A ∈ F we have

P(A) = 1−P(A).

5
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Proof. SinceΩ = A+A and P(Ω) = 1, using the property of the finitely-additivity, we have

1 = P(Ω) = P(A)+P(A).

It follows that
P(A) = 1−P(A).

Property 2.4 Suppose that A,B ∈ F and A ⊆ B. Then P(B) = P(A)+P(B\A).

Proof. Using the equality B = A+(B\A) and the property of countably additivity of P, we
have P(B) = P(A)+P(B\A).

Property 2.5 Suppose that A,B ∈ F and A ⊆ B. Then P(A)≤ P(B).

Proof. Following Property 2.4, we have P(B) = P(A)+P(B \A). Hence P(A) = P(B)−
P(B\A)≤ P(B).

Property 2.6. Suppose that A,B ∈ F . Then

P(A∪B) = P(A)+P(B)−P(AB).

Proof. Using the representation A∪B = (A\B)+AB+(B\A) and the property of finitely-
additivity of P, we have

P(A∪B) = P(A)+P(B)−P(AB).

Property 2.7 Suppose that A,B ∈ F . Then

P(A∪B)≤ P(A)+P(B).

Proof. Following Property 2.6, we have

P(A∪B) = P(A)+P(B)−P(AB).

It yields
P(A∪B) = P(A)+P(B)−P(AB)≤ P(A)+P(B).
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Property 2.8 (Continuity from above) Assume that (An)n∈N be an decreasing sequence of
events, i.e.,

(∀n)(n ∈ N → An+1 ⊆ An).

Then the following
P(∩n∈NAn) = lim

n→∞
P(An)

holds.

Proof. For n ∈ N we have

An = ∩k∈NAk +(An \An+1)+(An+1 \An+2)+ · · · .

Using the property of the countably-additivity of P, we obtain

P(An)−P(∩k∈NAk) =
∞

∑
p=1

P(An+p \An+p+1).

Note that the sum ∑∞
p=1 P(An+p\An+p+1) is the n-th residual series of absolutely convergent

series ∑∞
n=1 P(An \An+1). From the necessary and sufficient condition of the convergence

of the numerical series, we have

lim
n→∞

∞

∑
p=1

P(An+p \An+p+1) = 0.

It means that

lim
n→∞

(P(An)−P(∩k∈NAk)) = lim
n→∞

P(An)−P(∩k∈NAk) = 0,

i.e.,
lim
n→∞

P(An) = P(∩k∈NAk).

Property 2.9 (Continuity from below ) Let (Bn)n∈N be an increasing sequence of events,
i.e.,

(∀n)(n ∈ N → Bn ⊆ Bn+1).

Then the following equality is valid

P(∪n∈NBn) = lim
n→∞

P(Bn).
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Proof. For ∪n∈NBn we have the following representation

∪n∈NBn = B1 +(B2 \B1)+ · · ·+(Bk+1 \Bk)+ · · · .

Following the property of the countable-additivity of P, we get

P(∪n∈NBn) = P(B1)+P(B2 \B1)+ · · ·+P(Bk+1 \Bk)+ · · · .

From Property 2.4 we have

P(Bk+1) = P(Bk)+P(Bk+1 \Bk).

If we define P(Bk+1\Bk) from the above-mentioned equality and enter it in early considered
equality we obtain

P(∪n∈NBn) = P(B1)+(P(B2)−P(B1))+ · · ·+(P(Bk+1)−P(Bk))+ · · · .

Note that the series on the right is convergent. For the sum Sn of the first n members we
have

Sn = P(Bn).

From the definition of the series sum, we obtain

P(∪n∈NBn) = lim
n→∞

Sn = lim
n→∞

P(Bn).

Tests

Assume that (Ω,F ,P) be a probability space.
2.1. If P(A) = 0,95, then P(A) is equal to

a) 0,56, b) 0,55, c) 0,05, d) 0,03.

2.2 Assume thatA,B ∈ F , A ⊂ B, P(A) = 0,65 and P(B) = 0,68. Then P(B\A) is equal
to

a) 0,02, b) 0,03, c) 0,04, d) 0,05.

2.3 Assume that A,B ∈ F , P(A) = 0,35, P(B) = 0,45 and P(A∪B) = 0,75. Then
P(A∩B) is equal to

a) 0,02, b) 0,03, c) 0,04, d) 0,05.

2.4 Let (An)n∈N be a decreasing sequence of events and P(∩n∈NAn) = 0,89. Then
limn→∞ P(An) is equal to

a) 0,11, b) 0,12, c) 0,13, d) 0,14.

2.5 Let (An)n∈N be a decreasing sequence of events and P(An) = n+1
3n . Then

P(∩n∈NAn) is equal to
a) 1

2 , b) 1
3 , c) 1

4 , d) 1
5 .
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2.6. Let (An)n∈N be an increasing sequence of events and P(∪n∈NAn) = 0,89. Then
limn→∞ P(An) is equal to

a) 0,11, b) 0,12, c) 0,13, d) 0,14.

2.7. Let (An)n∈N be an increasing sequence of events and P(An) =
n−1
3n . Then

a) 1
2 , b) 1

3 , c) 1
4 , d) 1

5 .





Chapter 3

Examples of Probability Spaces

3.1. Classical probability space. Let Ω contains n points, i.e. Ω = {ω1, · · · ,ωn}. We
denote by F the class of all subsets of Ω. Let us define a real-valued function P on F by
the following formula

(∀A)(A ∈ F → P(A) =
|A|
|Ω|

),

where | · | denotes a cardinality of the corresponding set. One can easily demonstrate that
the triplet (Ω,F ,P) is a probability space. This probability space is called a classical prob-
ability space. The numerical function P is called a classical probability.

Definition 3.1 Let A be any event. We say that an elementary event ω ∈ Ω is successful
for the event A if ω ∈ A. We obtain the following rule for calculation of the classical
probability:

The classical probability of the event A is equal to the fraction a numerator of which is
equal to the number of all successful elementary events for the event A and a denominator
of which is equal to the number of all possible elementary events.

3.2 Geometric probability space. Let Ω be a Borel subset of the n- dimensional Euclidean
space Rn with positive Borel1 measure bn(cf. Example 5. 3). Let denote by F the class of
all Borel subsets of Ω. We set

(∀A)(A ∈ F → P(A) =
bn(A)
bn(Ω)

).

The triplet (Ω,F ,P) is called an n-dimensional geometrical probability space associ-
ated with the Borel set Ω. The function P is called n-dimensional geometrical probability
defined on Ω. When a point is falling in the set Ω ⊂ Rn and the probability that this point

1Borel Felix Eduard Justion Emil (7.01. 1871 3.03.1956.)-French mathematician, member of the Paris
Academy of Sciences (1921), professor of the Paris University (1909-1941).)

11
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will fall in any Borel subset of A ⊂ Ω is proportional to its Borel bn-measure, then we have
the following rule for a calculation of a geometric probability:

The geometrical probability of the event that a point will fall in the Borel subset A ⊂ Ω
is equal to the fraction with a numerator bn(A) and a denominator bn(Ω).

Let us consider some examples demonstrating how we can model probability spaces
describing random experiments.

Example 3.1

Experiment. We roll a six-sided dice.

Problem. What is the probability that we will roll an even number?

Modelling of the random experiment. Since the result of the random experiment is an
elementary event, a space of all elementary events Ω has the following form

Ω = {1;2;3;4;5;6}.

We denote by F a σ-algebra of all subsets of Ω(i.e. the powerset of Ω). It is clear, that

F = { /0;{1}; · · ·{6};{1;2}; · · ·{1;2;3;4;5;6}}.

Let denote by P a classical probability measure defined by

(∀A)(A ∈ F → P(A) =
|A|
6
).

The triplet (Ω,F ,P) is the probability space (i.e. the stochastic mathematical model) which
describes our experiment.

Solution of the problem. We must calculate the probability of the event B having the
following form

B = {2;4;6}.

By definition of P, we have

P(B) =
|B|
6

=
3
6
=

1
2

;

Conclusion. The probability that we roll an even number is equal to 1
2 .

Example 3.2

Experiment. We accidentally choose 3 cards from the complect of 36 cards.

Problem. What is the probability that in these 3 cards one will be ”ace”?
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Modelling of the experiment. Since the result of the random experiment is an elementary
event and it coincides with tree cards, the space of all elementary events would be the space
of all possible different tree cards. It is clear that

|Ω|=C3
36.

We denote by F a σ-algebra of all subsets of Ω. Let define a probability P by the
following formula

(∀A)(A ∈ F → P(A) =
|A|
C3

36
).

Note, that (Ω,F ,P) is the probability space describing our experiment.

Solution of the problem. If we will choose 1 card from the complect of aces and 2 cards
from the other cards, then considering all their possible combinations, we will obtain the
set A of all threes of cards where at least one card is ace. It is clear that number of A is equal
to C1

4 ·C2
32. By the definition of P we have

P(A) =
|A|
C3

36
=

C1
4 ·C2

32

C3
36

.

Conclusion. If we choose accidentally 3 cards from the complect of 36 cards, then the
probability of the event that between them at list one card will be ”ace” is equal C1

4 ·C2
32

C3
36

.

Example 3.3

Experiment. There are passed parallel lines on the plane such that the distance between
neighboring lines is equal to 2a. A 2l (2l < 2a)-long needle is thrown accidentally on the
plane.

Problem (Buffon)2 What is the probability that the accidentally thrown on the plane needle
intersects any of the above-mentioned parallel line?

Modelling of the experiment. The result of our experiment is an elementary event, which
can be defined by x and φ, where x is the distance from the middle of the needle to the
nearest line and φ is the angle between the needle and the above mentioned line. It is clear
that x and φ satisfy the following conditions 0 ≤ x ≤ a,0 ≤ φ ≤ π. Hence, a space of all
elementary events Ω is defined by

Ω = [0;π]× [0;a] = {(φ;x) : 0 ≤ φ ≤ π, 0 ≤ x ≤ a}.
2Buffon Georges Louis Leclerc (7.9.1707 -16.4.1788 ) French experimentalist, member of the Petersburgs

Academy of Sciences (1776), member of Paris Academy of Sciences (1733). The first mathematician, who
worked on the problems of geometrical probabilities.)
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We denote by F a class of all Borel subsets of Ω. Let define a probability P by the following
formula:

(∀A)(A ∈ F → P(A) =
b2(A)
b2(Ω)

).

Evidently, (Ω,F ,P) is the probability space which describes our experiment.

Solution of the problem. It is clear that to the event the needle accidentally thrown on the
plane intersects any above-mentioned parallel line - corresponds a subset B0, defined by

B0 = {(φ,x)| 0 ≤ φ ≤ π, 0 ≤ x ≤ l sinφ}.

By the definition of P we have

P(B0) =
b2(B)
a ·π

=

∫ π
0 l sinφdφ

a ·π
=

2l
aπ

.

Conclusion. The probability of the event that the needle accidentally thrown on the plane
will intersect any parallel line is equal to 2l

aπ .

Tests

3.1. There are 5 white and 10 black balls in the box. The probability that the acciden-
tally chosen ball would be black is equal to

a) 1
3 , b) 2

3 , c) 1
5 , d) 1

6 .

3.2. There are 7 white and 13 red balls in the box. The probability that between acci-
dentally chosen 3 balls 2 balls would be red is equal to

a) C2
13·C1

7
C3

20
, b) C1

13·C2
7

C3
20

, c) C2
13·C2

7
C3

20
, d) C1

13·C1
7

C3
20

.

3.3. We roll two six-sided dices. The probability that the sum of dices’s numbers is less
than 8, is equal to

a) 13
18 , b) 5

6 , c) 1
5 , d) 1

6 .

3.4. There are 17 students in the group. 8 of them are boys. There are staged 7 tickets
to be drawn. The probability that between owners of tickets are 4 boys, is equal to

a) C2
13·C2

7
C7

15
, b)C1

8 ·C2
7

C7
17

, c) C4
8 ·C3

9
C7

17
, d) C1

13·C1
7

C7
25

.

3.5.A cube, each side of which is painted, is divided on 1000 equal cubes. The obtained
cubes are mixed. The classical probability, that an accidentally chosen cube

1)has 3 painted sides, is equal to
a) 1

1000 , b) 1
125 , c) 1

250 , d) 1
400 ;

2)has 2 painted sides, is equal to
a) 12

124 , b) 11
120 , c) 12

125 , d) 9
125 ;

3) has 1 painted side, is equal to
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a) 54
250 , b) 43

145 , c) 48
125 , d) 243

250 ;
4) has no painted side, is equal to

a) 8
250 , b) 64

125 , c) 4
165 , d) 23

250 .

3.6. A group of 10 girls and 10 boys is accidentally divided into two subgroups. The
classical probability that in both subgroups the numbers of girls and boys will be equal, is

a) (C5
10)

2

C10
20

, b) C5
10

C10
20

, c) (C5
10)

3

C10
20

, d) C5
10

C5
20

.

3.7. We have 5 segments with lengths 1, 3, 4, 7 and 9. The classical probability that by
accidently choosing 3 segments we can construct a triangle, is equal to

a) 3
C3

5
, b) 2

C3
5
, c) 4

C3
5
, d) 5

C3
5
.

3.8. When roll two six-sided dice, the classical probability that
1) the sum of cast numbers is less than 5, is equal to

a) 7
36 , b) 5

18 , c) 1
4 , d) 3

9 ;
2) we roll 5 by any dice, is equal to

a) 7
36 , b) 8

36 , c) 11
36 , d) 3

19 ;
3) we roll only one 5 , is equal to

a) 7
36 , b) 5

18 , c) 10
36 , d) 12

19 ;
4) the sum of rolled numbers is divided by 3, is equal to

a) 1
3 , b) 2

5 , c) 1
6 , d) 2

9 ;
5) the module of the difference of rolled numbers is equal to 3, is

a) 1
6 , b) 2

5 , c) 2
6 , d) 2

5 ;
6) the product of rolled numbers is simple, is equal to

a) 5
36 , b) 7

36 , c) 11
36 , d) 2

36 .

3.9. We choose a point from a square with inscribed circle. The geometrical probability
that the chosen point does not belong to the circle, is equal to

a) 1− π
3 , b) 1− π

4 , c) 1− π
5 , d) 1− π

6 .

3.10. The telephone line is damaged by storm between 160 and 290 kilometers. The
probability that this line is damaged between 200 and 240 kilometers, is equal to

a) 1
13 , b) 2

13 , c) 4
13 , d) 5

13 .

3.11. The distance between point A and the center of the circle with radius R is equal
to d(d > R). Then:

1) the probability that an accidentally drawing line with the origin at point A, will
intersect the circle, is equal to

a) 2 arcsin( R
d )

π , b) 3 arcsin( R
d )

π , c) arcsin( R
d )

π , d) 2 arcsin( 2R
d )

π ;
2) the probability that an accidentally drawing ray with origin A, will intersect the circle,

is equal to

a) 2arcsin( R
d )

π , b) 3arcsin( R
d )

π , c) arcsin( R
d )

π , d) 2arcsin( 2R
d )

π .

3.12. We accidentally choose a point in a cube, in which is inscribed a ball. The
geometrical probability that an accidentally chosen point does not belong to the ball, is
equal to
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a) 1− π
3 , b) 1− π

4 , c) 1− π
5 , d) 1− π

6 .

3.13. We accidentally choose a point in a ball, in which is inscribed a cube. The
geometrical probability that an accidentally chosen point does not belong to the cube, is
equal to

a) 1− 2
√

3
3π , b) 1−

√
3

4π , c) 1−
√

3
5π , d) 1−

√
3

6π .

3.14. We accidentally choose a point in a tetrahedron , in which is inscribed a ball.
The geometrical probability that an accidentally chosen point does not belong to the ball, is
equal to

a) 1− 5π
√

2
48 , b) 5π

√
2

45 , c) 1−
√

3π
18 , d) 1− 5π

√
2

80 .

3.15. We accidentally choose a point in a ball, in which is inscribed a tetrahedron. The
geometrical probability that an accidentally chosen point does not belong to the tetrahedron,
is equal to

a) 1− 12
√

3
45π , b) 1− 1

9π , c) 1− 12
√

3
47π , d) 1− 12

√
3

43π .

3.16. We accidentally choose a point M in a square ∆, which is defined by

∆ = {(x,y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

The geometrical probability that coordinates (x,y) of the point M satisfy the following
condition

x+ y ≥ 1
2
,

is equal to
a) 7

8 , b) 7
9 , c) 3

5 , d) 4
5 .

3.17. We accidentally choose a point M in a square ∆ , which is defined by

∆ = {(x,y) : 0 ≤ x ≤ π
2
, 0 ≤ y ≤ π

2
}.

The geometrical probability that coordinates (x,y) of the point M satisfy the following
condition

sin(x)≤ y ≤ x,

is equal to a) 1+ π2

4 , b) 1+ π2

8 , c) 1+ π2

12 , d) 1+ π2

16 .

3.18. We accidentally choose a point M in a cube ∆, which is defined by

∆ = {(x,y,z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}.

The geometrical probability that coordinates (x,y,z) of the point M satisfy the following
condition

x2 + y2 + z2 ≤ 1
4
, x+ y+ z ≥ 1

2
,

is equal to
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a) π−1
48 , b) 4π−1

24 , c) π−2
50 , d) π+2

50 .

3.19. Two friends must meet at the concrete place in the interval of time [12, 13] . The
friend which arrived first waits no longer than 20 minutes. The probability that the meeting
between friends will happen within the mentioned interval, is equal to

a) 5
9 , b) 5

8 , c) 5
7 , d) 6

7 .

3.20. A student has planned to take money out of the bank. It is possible that he comes
to the bank in the interval of time 140015 140025. It is known also that the robbery of
this bank is planned in the same interval of time and it will continue for 4 minutes. The
probability that the student will be in the bank at moment of robbery is equal to

a) 1
10 , b) 1

11 , c) 1
5 , d) 1

6 .

3.21. We accidentally choose three points A,B and C on the circumference of a circle
with radius R. The probability that ABC will be an acute triangle is equal to

a) 1
3 , b) 1

4 , c) 1
5 , d) 1

6 .

3.22. We accidentally choose two points C and D on an interval [AB] with length l. The
probability that we can construct a triangle by the obtained three intervals is equal to:

a) 1
4 , b) 1

5 , c) 1
6 , d) 1

7 .

3.23. We accidentally choose point M = (p,q) in cube ∆ which is defined by

∆ = {(p,q) : 0 ≤ p ≤ 1, 0 ≤ q ≤ 1}.

The geometrical probability that the roots of the equation x2 + px + q = 0 will be real
numbers is equal to

a) 1
12 , b) 1

13 , c) 1
5 , d) 1

6 .

3.24. We accidentally choose point M from the sphere with radius R. The probability
that distance ρ between M and the center of the above mentioned sphere satisfies condition
R
2 < ρ < 2R

3 , is equal to
a) 7

27 , b) 1
4 , c) 37

216 , d) 8
29 .





Chapter 4

Total Probability and Bayes’
Formulas

Let (Ω,F ,P) be a probability space and let B be an event with positive probability (i.e.,
P(B)> 0). We denote with P(· | B) a real-valued function defined on the σ-algebra F by

(∀X)(X ∈ F → P(X |B) = P(X ∩B)
P(B)

).

The function P(· | B) is called a conditional probability relative to the hypothesis that the
event B occurred. The number P(X |B) is the probability of the event X relative to the
hypothesis that the event B occurred.

Theorem 4.1. If B ∈ F and P(B) > 0, then the conditional probability P(· | B) is the
probability.

Proof. We have to show :
1) P(A|B)≥ 0 for A ∈ F ;
2) P(Ω|B) = 1;
3) If (Ak)k∈N is a pairwise-disjoint family of events, then

P(∪k∈NAk|B) = ∑
k∈N

P(Ak|B).

The validity of the item 1) follows from the definition of P( · | B) and from the non-
negativity of the probability P. Indeed,

P(A|B) = P(A∩B)
P(B)

≥ 0.

The validity of the item 2) follows from the following relations

P(Ω|B) = P(Ω∩B)
P(B)

=
P(B)
P(B)

= 1.

19
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The validity of the item 3) follows from the countable-additivity of P and from the
elementary fact that if (An)n∈N is a family of pairwise-disjoint events, then the family of
events (An ∩B)n∈N also has the same property. Indeed,

P(∪n∈NAn|B) =
P((∪n∈NAn)∩B)

P(B)
=

P(∪n∈N(An ∩B))
P(B)

=

=
∑n∈N P(An ∩B)

P(B)
= ∑

n∈N

P(An ∩B)
P(B)

= ∑
n∈N

P(An | B)

This ends the proof of theorem.

Theorem 4.2 If P(B)> 0, then P(B|B) = 0.

Proof.

P(B|B) = P(B∩B)
P(B)

=
P( /0)
P(B)

= 0.

Definition 4.1 Two events A and B are called independent if

P(A∩B) = P(A) ·P(B).

Example 4.1 Assume that Ω = {(x,y) : x ∈ [0;1],y ∈ [0;1]}. Let F denotes a class of
all Borel subsets of Ω. (cf. Chapter 5, Example 5.3). Let denote by P the classical Borel
probability measure b2 on Ω. Then two events

A = {(x,y) : x ∈ [0;
1
2
],y ∈ [0;1]},

B = {(x,y) : x ∈ [0;1],y ∈ [
1
2

;
3
4
]}

are independent.
Indeed, on the one hand, we have

P(A∩B) = b2(A∩B) = b2({(x,y) : x ∈ [0;
1
2
],y ∈ [

1
2

;
3
4
]}= 1

2
· 1

4
=

1
8
.

On the other hand, we have

P(A) ·P(B) = b2(A) ·b2(B) =
1
2
· 1

4
=

1
8
.

Finally, we get
P(A∩B) = P(A) ·P(B),

which shows us that two events A and B are independent.

Theorem 4.3 If two events A and B are independent and P(B)> 0, then P(A|B) =P(A).
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Proof. From the definition of the conditional probability, we have

P(A|B) = P(A∩B)
P(B)

.

The independence of events A and B gives P(A∩B) = P(A) ·P(B). Finally, we get

P(A|B) = P(A∩B)
P(B)

=
P(A) ·P(B)

P(B)
= P(A).

This ends the proof of theorem .

Remark 4.1 Theorem 4.3 asserts that when events A and B are independent then any
information concerned an occurrence or a non-occurrence of one of them does not influence
on the probability of the occurrence of other.

Theorem 4.4 If two events A and B are independent, then independent are also events A
and B.

Proof. We have

P(A∩B) = P((Ω\A)∩B) = P((Ω∩B)\ (A∩B)) =

= P(B\ (A∩B)) = P(B)−P(A∩B) = P(B)−P(A) ·P(B) =

= P(B)(1−P(A)) = P(B) ·P(A).

This ends the proof of theorem.

Example 4.2

Experiment. We throw two six-sided dices.

Problem. What is the probability that the sum of thrown numbers is equal to 8 relative to
the hypothesis that the sum of thrown numbers is even ?

Modelling of the experiment. A probability space Ω of all elementary events has the
following form

Ω = {(x,y) : x ∈ N,y ∈ N, 1 ≤ x ≤ 6, 1 ≤ y ≤ 6},

where x and y denote thrown numbers on the first and second dice, respectively.
We denote with F a class of all subsets of Ω. Let P denote a classical probability.

Finally, a probability space (Ω,F ,P) describing our experiment is constructed.

Solution of the problem. Let denote with A a subset of Ω which corresponds to the event:
” The sum of thrown numbers is equal to 8 ”. Then, the event A has the following form:

A = { (6;2); (5;3); (4;4); (3;5); (2;6) }.
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Let denote with B the following event: ”The sum of thrown numbers is even”. We have

B = {(1;1); (1;3); (2;2); (3;1); (1;5); (2;4); (3;3);(4;4); (5;1);

(6;2); (5;3);(4;4); (3;5); (2;6); (6;4); (5;5); (4;6);(6;6) }.

Note that A∩B = A. By the definition of the classical probability we have

P(A|B) = P(A∩B)
P(B)

=
5

36
:

18
36

=
5

18
.

Conclusion. If we throw two six-sided dices then the conditional probability that the sum
of thrown numbers is equal to 8 concerning a hypothesis that the sum of thrown numbers is
even, is equal to 5

18 .

Definition 4.2 Suppose that J ⊆ N. A family of event (Ai)i∈J is called a complete system
of representatives if :

1) Ai ∩A j = /0, i, j ∈ J, i ̸= j,
2) (∀ j)( j ∈ J → P(A j)> 0),
3) ∪ j∈J A j = Ω.

Theorem 4.5 Suppose that J ⊆ N and (A j) j∈J be a complete system of representatives. For
arbitrary event B the following formula

P(B) = ∑
j∈J

P(B|A j) ·P(A j)

is valid, which is called the formula of total probability.

Proof. We have
B = ∪ j∈J(B∩Ak),

where (B∩A j) j∈J is a family of pairwise-disjoint events. Indeed, we have,

B = B∩Ω = B∩ (∪ j∈JA j) = ∪ j∈J(B∩A j).

From the countable-additivity of P we have

P(B) = ∑
j∈J

P(B∩A j).

Note that for arbitrary natural number j ( j ∈ J) we have

P(B|A j) =
P(B∩A j)

P(A j)
,

Hence,
P(B∩A j) = P(A j) ·P(B|A j).
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Finally, we get

P(B) = ∑
j∈J

P(B∩A j) = ∑
j∈J

P(A j) ·P(B|A j).

This ends the proof of theorem.

Example 4.3

Experiment. There are placed 3 white and 3 black balls in an urn I, 3 white and 4 black
balls in an urn II and 4 white and 1 black balls in the urn III. We accidentally choose a box
and further accidentally choose a ball from this urn.

Problem. What is the probability that accidentally chosen ball will be white if the proba-
bility of a choice of any urn is equal to 1

3 ?.

Solution of the Problem. Let Ai denote an event that we have chosen i-th urn (1 ≤ i ≤ 3).
Then we obtain that P(A1) = P(A2) = P(A3) =

1
3 . Let B denote an event which corre-

sponds to hypothesis that we have chosen white ball. By the definition of the conditional
probability, we have P(B j|A1) =

1
2 ;P(B j|A2) =

3
7 ;P(B j|A2) =

4
5 . Using the formula of total

probability, we have

P(B) =
1
3
· 2

5
+

1
3
· 3

7
+

1
3
· 4

5
=

57
105

.

Conclusion. The probability that accidentally chosen ball will be white in our experiment
is equal to 57

105 .

Example 4.4

Experiment. The probability of formation of k bacteria (k ∈ N) is equal to λk

k! e−λ (λ > 0).
The probability of adaptation with environment of the formed bacterium is equal to p(0 <
p < 1).

Problem. What is the probability that n bacteria (n ∈ N) will pass the adaptation process ?

Solution of the problem. Let Ak be the event that k bacteria (k ∈ N) pass adaptation
process. Note that (Ak)k∈N is a complete system of representatives. Let Bn denotes the
event that n baqteria pass the adaptation process (n ∈ N) . Note that P(Bn|Ak) = 0, when
k ≤ n−1. If k ≥ n, then P(Bn|Ak) =Cn

k pn(1− p)k−n. We have

P(Bn) = ∑
k∈N

P(Ak)P(Bn|Ak) = ∑
k=n

λk

k!
e−λCn

k pn(1− p)k−n =

= ∑
k=n

λk

k!
e−λ k!

n! · (k−n)!
pn(1− p)k−n =
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=
(pλ)n

n!
e−λ ∑

k=n

λk−n

·(k−n)!
(1− p)k−n =

(pλ)n

n!
e−λ ∑

k=n

(λ · (1− p))k−n

·(k−n)!
=

=
(pλ)n

n!
e−λeλ·(1−p) =

(pλ)n

n!
e−p·λ.

Conclusion. The probability that n bacteria pass the adaptation process (n ∈ N) is equal to
(pλ)n

n! e−p·λ.

Theorem 4.6 Assume that J ⊆ N and (A j) j∈J be a complete system of representatives. For
every event B with P(B)> 0 we have

P(Ai|B) =
P(Ai)P(B|Ai)

∑ j∈J P(A j)P(B|A j)
(i ∈ J),

which is called Bayes’ 1 formulas.

Proof. Using formula of the total probability and the definition of the conditional probabil-
ity, we have

P(Ai|B) =
P(Ai ∩B)

P(B)
=

P(Ai)P(B|Ai)

∑ j∈J P(A j)P(B|A j)
(i ∈ J).

This ends the proof of theorem.

Example 4.5 Suppose that we have chosen a white ball in the experiment considered in
Example 4.3.

Problem. What is the probability that we have chosen white ball from the first urn?

Solution of the problem. By the Bayes’ formula we have

P(A1|B) =
P(A1) ·P(B|A1)

P(A1) ·P(B|A1)+P(A2) ·P(B|A2)
=

1
3
· 2

5
:

57
105

=
2
9
.

Example 4.6 ( A problem about ruin of the player ). Let consider the game concerned with
throwing of a coin, when playing heads or tails. If comes the side of the coin which has
been chosen by the player, he wins 1 lari. In other case he loses the same amount of money.
Assume that the initial capital of the player is x lari and he wishes to increase his capital
to a lari (x < a). The game is finished when the player is ruined or when he increases his
capital to a lari.

Problem. What is the probability that the player will be ruined ?

1Bayes Thomas (1702, London-4.4.1761, Tanbridj)- English mathematician, the member of London Royal
Society (1742). Main works in probability theory (1763).
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Solution of the problem. Let p(x) denote the probability of the ruin of the player when his
initial capital is x lari. Then after one step in the case of winning the probability of the ruin
will be p(x+ 1), in other case same probability will be p(x− 1). Let B1 denote the event,
which corresponds to the case when the player wins in the first step. Analogously, denote
by B2 the event, which corresponds to the case when the player loses in the first step. We
denote by A the event which corresponds to the ruin of the player. Then by the definition of
the conditional probability, we have

P(A|B1) = p(x+1), P(A|B2) = p(x−1).

It is clear that (B1,B2) is a complete system of events. Since the coin is symmetrical, we
have P(B1) = P(B2) =

1
2 . Using the formula of total probability, we have

p(x) =
1
2
[p(x+1)+ p(x−1)].

Note that the following initial conditions p(0) = 1 and p(a) = 0 are fulfilled. One can easily
check that the following linear function

p(x) = c1 + c2x,

whose coefficients are defined by

p(0) = c1 = 1, p(a) = c1 + c2a = 0,

is a solution of the above mentioned equation. Finally, we get

p(x) = 1− x
a
, 0 ≤ x ≤ a.

Conclusion. The probability that the player will be ruined in the above described game in
the case when his initial capital is equal to x lari, is equal to

p(x) = 1− x
a
, 0 ≤ x ≤ a.

Example 4.6 (The problem about division of game between hunters). The probability
of shooting the game for the first hunter is equal to 0,8. The same probability for the second
hunter is - 0,7. The beast was shot with simultaneous shots. The mass of the game was 190
kg. It was found that the game was killed with one bullet. How should the game be divided
between hunters?

Solution of the problem. Let B denote the event that the game was killed by one hunter in
the case of simultaneous shots. Let A1 and A2 denote events that the animal was killed by
the first and the second hunters, respectively. Using Bayes’ formulas we obtain

P(A1|B) =
0,3 ·0,8

0,3 ·0,8+0,2 ·0,7
=

12
19

,
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P(A2|B) =
0,2 ·0,7

0,3 ·0,8+0,2 ·0,7
=

7
19

.

It follows, that P(A1|B) · 190 = 120 (kg) of the game belongs to the first hunter and
P(A2|B) ·190 = 70 (kg) of the game belongs to the second hunter, respectively.

Tests

4.1. Two shots shoot a target. The probability that the first shot will hit the shooting
mark is equal to 0,9. Analogous probability for the second shot is 0,7. Then the probability
that the target will be hit by both shots, is equal to

a) 0,42, b) 0,63, c) 0,54, d) 0,36.

4.2. The number of non-rainy days in June for Tbilisi is equal to 25. The probability
that the first two days would be non-rainy is equal to

a) 5
87 , b) 20

29 , c) 19
29 , d) 18

29 .

4.3. We have accidently chosen two points A and B from set ∆ which is defined by

∆ = {(x,y) : x ∈ [0,1], y ∈ [0,1]}.

The functions g and f are defined by

g((x,y)) =
{

1, if x2 + y2 ≤ 1
4 ,

0, if x2 + y2 > 1
4 ,

f ((x,y)) =
{

0, if x+ y ≤ 1
2 ,

1, if x+ y > 1
2 ,

Then the probability that g(A)+ f (B) = 1, is equal to
a) 7

8 −
3π
64 , b) 5

8 −
3π
64 , c) 7

8 −
π
16 , d) 1− π

8 .

4.4. Here we have three boxes with the following compositions of balls

Box Black balls White balls
I 2 3

II 3 2
III 1 4

We accidently choose a box, from which accidentally choose also a ball.
1) The probability that the chosen ball is white, is equal to

a) 0,4, b) 0,6, c) 0,7, d) 0,8;
2) It is known that an accidently chosen ball is white. The probability that we have

chosen a ball from box I, is equal to
a) 1

3 , b) 1
4 , c) 1

5 , d) 1
6 .

4.5. 100 and 200 details are produced in plants I and II, respectively. The probabilities
of the producing of a standard detail in plants I and II are equal to 0,9 and 0,8, respectively.
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1) A damage caused by the realization of non-standard details made up 3000 lari. A fine
which must be payed by the administration of plant II caused realization of its non-standard
details is equal to

a) 2400 lari, b) 2300 lari, c) 2000 lari, d) 1600 lari;
2) The prófit received by the realization of standard details made up 5000 lari. A portion

of the prófit due to plant I is equal to
a) 1800, b) 1700, c) 1400, d) 3000 .

4.6. The player chooses a ”heads” or ”tails”. If comes the side of the coin which was
chosen by the player, then he wins 1 lari. In other case he loses the same money. Assume
that the initial capital of the player is 1000 lari and he wishes to increase his capital to 2000
lari . The game is finished when the player is ruined or when the player will increase his
capital to 2000 lari. What is the probability that the player will increase his capital to the
until desired amount ?

a) 0,4, b) 0,5, c) 0,6, d) 0,7.

4.7. The probability of formation of k-bacteria (k ∈ N) is equal to 0,3k

k! e−0,3 (k ∈ N).
The probability of the adaptation with environment of the formed bacterium is equal to 0,1
.

1) The probability that exactly 5 bacteria will pass the adaptation process is equal to
a) 0,035

5! e−0,03, b) 0,045

5! e−0,04, c) 0,055

5! e−0,05, d) 0,065

5! e−0,06;
2) The observation of the accidentally chosen bacterium showed us that it has passed

the adaptation process. The probability that this bacterium belongs to the adapted family
consisting of 6 members, is equal to

a) 0,036

6! : (∑∞
k=1

0,03k

k·k! e−0,03), b) 0,036

6·6! : (∑∞
k=1

0,03k

k·k! e−0,03).





Chapter 5

Applications of Caratheodory
Method

5.1 Construction of Probability Spaces with Caratheodory
method

Let Ω be a non-empty set and let F be any class of subsets of Ω.

Lemma 5.1.1 There exists a σ-algebra σ(F) of subsets of Ω, which contains the class F
and is minimal in the sense of inclusion between such σ-algebras which contain F.

Proof. Let (F j) j∈J denote a family of all σ-algebras of subsets of Ω which contain F and
let define a class σ(F) by the following formula

σ(F) = ∩ j∈JF j.

Let show that σ(F) is a σ-algebra.
Indeed,
1) Ω ∈ σ(F), because Ω ∈ F j for j ∈ J.
2) Let (Ak)k∈N be any sequence of elements of σ(F). Since this is a sequence of ele-

ments of F j for arbitrary j ∈ J, we conclude that ∩k∈NAk ∈ F j and ∪k∈NAk ∈ F j. The latter
relation means that ∩k∈NAk ∈ ∩ j∈JF j = σ(F) and ∪k∈NAk ∈ ∩ j∈JF j = σ(F).

3) If A ∈ σ(F), then A ∈ F j for arbitrary j ∈ J . The latter relation means that A ∈
∩ j∈JF j = σ(F).

Now assume that σ(F) is not minimal (in the sense of inclusion) between such σ-
algebras which contain F . It means that there exists a σ-algebra F ∗, such that the following
two conditions

1) F ⊂ F ∗,
2) F ∗ ⊂ σ(F) and σ(F)\F ∗ ̸= /0
are fulfilled.

29
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By the definition of family (F j) j∈J there exists an index j0 ∈ J such that F j0 = F ∗.
Hence, σ(F) ⊂ F ∗ which contradicts to 2). So we have obtained a contradiction and
Lemma 5.1.1 is proved.

Definition 5.1.1 Let S1 and S2 be two classes of subsets of Ω such that S1 ⊂ S2. Let P1
and P2 be two real-valued functions defined on S1 and S2, respectively. The function P2 is
called an extension of the function P1 if

(∀X)(X ∈ S1 → P2(X) = P1(X)).

Definition 5.1.2 Let A be an algebra of subsets Ω. A real-valued function P defined on A
is called a probability if the following three conditions are fulfilled

1) P(A)≥ 0 for A ∈ A ;
2) P(Ω) = 1;
3) If (Ak)k∈N A is a family of pairwise disjoint elements of A such that ∪k∈NAk ∈ A ,

then
P(∪k∈NAk) = ∑

k∈N
P(Ak).

The general method of a construction of probability spaces is contained in the following
Theorem.

Theorem 5.1.1 (Charatheodory 1). Let A be an algebra of subsets of Ω and P be a prob-
ability measure defined on A . Then there exists a unique probability measure P on σ(A)
which is an extension of P. This extension is defined by the following formula:

(∀B)(B ∈ σ(A)→ P(B) = inf{ ∑
k∈N

P(Ak)|(∀k)(k ∈ N → Ak ∈ σ(A))

& B ⊆ ∪k∈NAk }.

Remark 5.1.1 The proof of Theorem 5.1.1 can be found in [6] .
Below we consider some applications of Theorem 5.1.1.

1Caratheodory Constantin (13.9.1873, Berlin2.2.1950, Munhen )-German mathematician. Professor of the
Munhen University (1924-39), Lecturer of the Athena University(1933). Main works in theory of measures.
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5.2 Construction of the Borel one-dimensional measure b1 on
[0,1]

Let A denote a class of subsets of [0,1] elements of which can be presented as a union of
a finite family of elements having one of the forms

[ak,bk[, [ak,bk], ]ak,bk[, ]ak,bk].

One can easily show that A is an algebra of subsets of [0,1] . We set

P([ak,bk[) = P([ak,bk]) = P(]ak,bk[) = P(]ak,bk]) = bk −ak.

In natural way, we can define P on elements of A . It is not difficult to check that P is
a probability measure on A . Using Theorem 5.1.1 we deduce that there exists a unique
extension P on σ(A) . A class σ(A) is called a Borel σ-algebra of subsets of [0,1]
and is denoted by B([0,1]). The probability P is called a one-dimensional classical Borel
measure on [0,1] and is denoted by b1. The triplet ([0,1],B([0,1]),b1) is called a Borel
classical probability space associated with [0,1].

5.3 Construction of Borel probability measures on R

Let F : R→ [0,1] be a continuous from the right function on R, which satisfies the following
conditions:

lim
x→−∞

F(x) = 0 & lim
x→+∞

F(x) = 1.

We suppose that F(−∞) = 0 and F(+∞) = 1.
We set Ω = R∪{+∞}.
Let A denote a class of all subsets of Ω , which are represented by the union of finite

number of semi-closed intervals of the form (a,b], i.e.,

A = {A|A =
n

∑
i=1

(ai,bi]},

where −∞ ≤ ai < bi ≤ ∞ (1 ≤ i ≤ n).
It is easy to show that A is an algebra of subsets of Ω.
We set

P(A) = P(
n

∑
i=1

(ai,bi])) =
n

∑
i=1

P((ai,bi]) =
n

∑
i=1

F(bi)−F(ai).

One can easily demonstrate that the real-valued function P is a probability defined on
A . Using Theorem 5.1.1 we deduce that there exists a unique probability measure P on
σ(A) which is an extension of P. The class σ(A) is called a Borel σ-algebra of subsets
of the real axis R and is denoted by B(R). A real-valued function PF , defined by

(∀X)(X ∈ B(R)→ PF(X) = P(X)),
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is called a probability Borel measure on R defined by the function F .

Example 5.3.1. Let F be defined by

(∀x)(x ∈ R → F(x) =
1√
2π

∫ x

−∞
e−

t2
2 dt ).

Let PF be a Borel probability measure on R defined by F . Then the triplet (Ω,F ,P) is
called an one-dimensional canonical(or standard) Gaussian probability space, associated
with one-dimensional Euclidean vector space R(= R1).

The real-valued function PF is called an one-dimensional canonical (or standard) Gaus-
sian measure on R and is denoted by Γ1.

5.4 The product of a finite family of probabilities

Let (Ωi,Fi,Pi) (1 ≤ i ≤ n) be a finite family of probability spaces. We introduce some
notions.

n

∏
i=1

Ωi = {(ω1, · · · ,ωn) | ω1 ∈ Ω1, · · · ,ωn ∈ Ωn}.

A set A ⊆ ∏n
i=1 Ωi is called cylindrical if the following representation

B =
n

∏
i=1

Bi,

is valid, where Bi ∈ Fi (1 ≤ i ≤ n).
Let A be a class of all subsets of ∏n

i=1 Ωi which are represented by the union of a finite
number of pairwise disjoint cylindrical subsets. Note that A is an algebra of subsets of
∏n

i=1 Ωi. We set

P(
n

∏
i=1

Bi) =
n

∏
i=1

Pi(Bi)

and extend in the natural way a function P on class A . Now one can easily demonstrate that
function P is a probability measure defined on algebra A . Using Charatheodory theorem
there exists a unique probability measure P on σ(A) which extends P. Class σ(A) is called
a product of the family of σ-algebras (Fi)1≤i≤n and is denoted by ∏1≤i≤n Fi. The proba-
bility P is called a product of the family of probabilities (Pi)1≤i≤n and is denoted by ∏n

i=1 Pi.
The triplet (∏n

i=1 Ωi,∏n
i=1 Fi,∏n

i=1 Pi) is called a product of the family of probability spaces
(Ωi,Fi,Pi)1≤i≤n.

Remark 5.4.1 Let consider a sequence of n independent random experiments. It is such a
sequence of n random experiments when the result of any experiment does not influence on
the result in the next experiment. Assume that i-th (1 ≤ i ≤ n) experiment is described by
a probability space (Ωi,Fi,Pi). Then a sequence of n independent random experiments is
described by (∏n

i=1 Ωi,∏n
i=1 Fi,∏n

i=1 Pi).
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Here we consider some examples.

Example 5.4.1 (Bernoulli 2 probability measure).
We set

Ωi = {0,1}, Fi = {A|A ⊆ Ωi}, Pi({1}) = p

for i (1 ≤ i ≤ n) and 0 < p < 1. The product of probability spaces

(
n

∏
i=1

Ωi,
n

∏
i=1

Fi,
n

∏
i=1

Pi)

is called the Bernoulli n-dimensional classical probability space.
∏n

i=1 Pi is called the Bernoulli n-dimensional probability measure. If we consider a set
Ak defined by

Ak = {(ω1, · · · ,ωn)|(ω1, · · · ,ωn) ∈
n

∏
i=1

Ωi &
n

∑
i=1

ωi = k},

then using the structure of the above-mentioned measure, we obtain

(∀(ω1, · · · ,ωn))((ω1, · · · ,ωn) ∈ Ak →
n

∏
i=1

Pi((ω1, · · · ,ωn)) = pk(1− p)n−k).

Hence, ∏n
i=1 Pi(Ak) = |Ak|pk(1− p)n−k, where | · | denotes the cardinality of the corre-

sponding set. It is easy to show that |Ak|=Ck
n, where Ck

n denotes the cardinality of all dif-
ferent subsets of cardinality k in the fixed set of cardinality n. The probability (∏n

i=1 Pi)(Ak)
is denoted by Pn(k) , which means that during n-random two {0,1}-valued experiments
the event {1} had occurred k-times, if it is known that the probability of event {1} in an
arbitrary experiment is equal to p. If we denote by q the probability of event {0}, then we
obtain the following formula

Pn(k) =Ck
n pkqn−k (1 ≤ k ≤ n),

which is called Bernoulli formula.
A natural number k0 ∈ [0,n] is called a number with hight probability if

P(k0) = max
0≤k≤n

Pn(k).

The number k0 with hight probability is calculated by the following formula

k0 =

{
[(1+n)p], if (1+n)p /∈ Z;

(1+n)p or (1+n)p−1, if (1+n)p ∈ Z,

2Jacob Bernoulli (27.12.1654-16.8.1705 )-Swedish mathematician, professor of Bazel University (1687 ).
Him belongs the first proof of the so called Bernoulli theorem(which is a partial case of the Law of Large
numbers ) (cf. Arsconjectandi(Basileqe)(1713).



34 Gogi Pantsulaia, Zurab Kvatadze and Givi Giorgadze

where [· ] denotes an integer part of the corresponding number.

Example 5.4.2 ( n-dimensional multinomial probability measure). Let triplet
(Ωi,Fi,Pi)1≤i≤n be defined by :

a) Ωi = {x1, · · · ,xk} (1 ≤ i ≤ n),
b) Fi is a powerset of Ωi for (1 ≤ i ≤ n),
c) Pi({x j}) = p j > 0, 1 ≤ i ≤ n, 1 ≤ j ≤ k, ∑k

j=1 p j = 1.
Then triplet (∏n

i=1 Ωi,∏n
i=1 Fi,∏n

i=1 Pi) is called n-dimensional multinomial probability
space.

A real-valued function ∏n
i=1 Pi is called n-dimensional multinomial probability.

If we consider a set An(n1, · · · ,nk), defined by

An(n1, · · · ,nk) = {(ω1, · · · ,ωn)|(ω1, · · · ,ωn) ∈
n

∏
i=1

Ωi &

|{i : ωi = xp}|= np, 1 ≤ p ≤ k},

then using the structure of the product measure, we obtain

(∀(ω1, · · · ,ωn))((ω1, · · · ,ωn) ∈ An(n1, · · · ,nk)→
n

∏
i=1

Pi((ω1, · · · ,ωn)) = pn1
1 ×·· ·× pnk

k ).

Hence, ∏n
i=1 Pi(An(n1, · · · ,nk)) = |An(n1, · · · ,nk)|× pn1

1 ×·· ·× pnk
k , where | · | denotes the

cardinality of the corresponding set. It is not difficult to prove that |An(n1, · · · ,nk)| =
n!

n1!×···×nk! .
Then probability ∏n

i=1 Pi(An(n1, · · · ,nk)) (denoted by Pn(n1, · · · ,nk)) assumes that
during n-random {x1, · · · ,xk}-valued experiments the event x1 will occur n1-times, · · · ,
the event xk will occur nk-times if it is known that in i-th experiment the probability that
the event xi occurred is equal to pi(1 ≤ i ≤ k), is calculated by the following formula

Pn(n1, · · · ,nk) =
n!

n1!×·· ·×nk!
× pn1

1 ×·· ·× pnk
k ,

This formula is called the formula for calculation of n-dimensional multinomial probability.

Remark 5.4.1 Note that the class of n-dimensional multinomial probability measures con-
sists the class of n-dimensional Bernoulli probability measures. In particular, when k = 2,
the n-dimensional multinomial probability measure stands n-dimensional Bernoulli proba-
bility measure.

Example 5.4.3 (n-dimensional Borel classical measures on [0,1]n and Rn). Assume that a
family of probability spaces (Ωi,Fi,Pi)1≤i≤n is defined by:

a) Ωi = [0,1] (1 ≤ i ≤ n),
b) Fi = B([0,1]) (1 ≤ i ≤ n),
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c) Pi = b1, (1 ≤ i ≤ n).
Then triplet (∏n

i=1 Ωi,∏n
i=1 Fi,∏n

i=1 Pi) is called n-dimensional Borel probability space
associated with n-dimensional cube [0,1]n. The real-valued function ∏n

i=1 Pi is called n-
dimensional classical Borel measure defined on [0,1]n. The real-valued function bn, defined
by

(∀X)(X ∈ B(Rn)→ bn(X) = ∑
g∈Zn

n

∏
i=1

Pi([0,1[n∩g(X)),

is called n-dimensional classical Borel measure defined on Rn.

Example 5.4.4 Assume that a family of functions (Fi)1≤i≤n is defined by

(∀i)(∀x)(1 ≤ i ≤ n & x ∈ R → Fi(x) =
1√
2π

∫ x

−∞
e−

t2
2 dt ).

Assume also that Pi denotes the probability measure on R defined by Fi. Then the probabil-
ity space ((∏1≤i≤n Ωi,∏i∈N Fi,∏i∈N Pi) is called an n-dimensional canonical (or standard)
Gaussian probability space associated with Rn. The real-valued function ∏1≤i≤n Pi is called
an n-dimensional canonical (or standard) Gaussian probability measure on Rn and is de-
noted by Γn.

5.5 Definition of the Product of the Infinite Family of Probabil-
ities

Let (Ωi,Fi,Pi)i∈I be an infinite family of probability spaces. We set

∏
i∈I

Ωi = {(ωi)i∈I : ωi ∈ Ωi, i ∈ I}.

A subset A ⊆ ∏i∈I Ωi is called a cylindrical set, if there exists a finite number of indices
(ik)1≤k≤n and such elements Bik(1 ≤ k ≤ n) of σ-algebras Fik(1 ≤ k ≤ n) that

B = {(ωi)i∈I : (ωi ∈ Ωi, i ∈ I \∪n
k=1{ik} ) & (ωi ∈ Bi, i ∈ ∪n

k=1{ik}) }.

Let A denote a class of such subsets of ∏i∈I Ωi which are presented by the union of finite
number of pairwise disjoint cylindrical subsets. Note that class A is an algebra of subsets
of ∏i∈I Ωi. Define a real-valued function P on the cylindrical subset B by the following
formula

P(B) =
n

∏
k=1

Pik(Bik)

and extend in natural way a functional P on class A . Clearly, a real-valued function P is the
probability defined on an algebra A . Using Charatheodory theorem we deduce an existence
of the unique extended probability measure P on class σ(A). The class of subsets σ(A)
is called the product of the infinite family of σ-algebras (Fi)i∈I and is denoted by ∏i∈I Fi.
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The real-valued function P is called the product of the infinite family of probabilities (Pi)i∈I

and is denoted by ∏i∈I Pi. A triplet (∏i∈I Ωi,∏i∈I Fi,∏i∈I Pi) is called the product of the
infinite family of probability spaces (Ωi,Fi,Pi)i∈I .

Remark 5.5.1 An infinite sequence of independent experiments is such a sequence of ex-
periments when the result of each experiment does not influence on the result of any next
experiment. Assume that i-th (i ∈ I) random experiment is described by the probability
space (Ωi,Fi,Pi). Then an infinite sequence of independent experiments is described by
the triplet

(∏
i∈I

Ωi,∏
i∈I

Fi,∏
i∈I

Pi).

Let consider some examples.

Example 5.5.1 For i ∈ N we set

Ωi = {0,1}, Fi = {A|A ⊆ Ωi}, Pi({1}) = p,

where 0 < p < 1. The product of the infinite family of probability spaces

(∏
i∈N

Ωi,∏
i∈N

Fi,∏
i∈N

Pi)

is called the infinite-dimensional Bernoulli classical probability space. A real-valued func-
tion ∏i∈N Pi is called the infinite-dimensional Bernoulli classical probability .

Example 5.5.2 (Infinite-dimensional multinomial probability space). Assume that an infi-
nite family of probability spaces (Ωi,Fi,Pi)i∈N is defined by :

a) Ωi = {x1, · · · ,xk} (i ∈ N),
b) Fi is the powerset of Ωi for arbitrary i ∈ N,
c)Pi({x j}) = p j > 0, i ∈ N, 1 ≤ j ≤ k, ∑k

j=1 p j = 1.
Then (∏i∈N Ωi,∏i∈N Fi,∏i∈N Pi) is called the infinite-dimensional multinomial prob-

ability space. The real-valued function ∏i∈N Pi is called the infinite-dimensional multino-
mial probability.

Example 5.5.3 (Infinite-dimensional Borel classical probability measure on infinite-
dimensional cube [0,1]N) Let consider an infinite family of probability spaces
(Ωi,Fi,Pi)i∈N defined by:

a) Ωi = [0,1] (i ∈ N),
b) Fi = B([0,1]) (i ∈ N),
c) Pi = b1 (i ∈ N).
Then the triplet

(∏
i∈N

Ωi,∏
i∈N

Fi,∏
i∈N

Pi)
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is called the infinite-dimensional Borel classical probability measure associated with
infinite-dimensional cube [0,1]N . Measure ∏i∈N Pi is called the infinite-dimensional Borel
classical probability measure on infinite-dimensional cube [0,1]N and is denoted by bN .

Example 5.5.4 Assume that an infinite family of functions (Fi)i∈N is defined by

(∀i)(∀x)(i ∈ N & x ∈ R → Fi(x) =
1√
2π

∫ x

−∞
e−

t2
2 dt ).

Let Pi be a Borel probability measure on R defined by Fi. Then triplet
(∏i∈N Ωi,∏i∈N Fi,∏i∈N Pi) is called the infinite-dimensional Gaussian canonical probabil-
ity space associated with RN . The real-valued function ∏i∈N Pi is called the infinite-
dimensional Gaussian canonical probability measure defined on RN and is denoted by ΓN .

Tests

5.1. There are 10000 trade booths on the territory of the market. The probability that
each owner of a booth will get profit 500 lari during one quarter is equal to 0; 5. Further,
the probability that the same owner of the booth loose 200 lari during the same quarter is
equal to 0; 5. The number of such owners of trade booths , which at the end of the year

1) will loose 800 lari, is equal to
a) 625, b) 670, c) 450, d) 700;

2) will loose 100 lari, is equal to
a) 2500, b) 3000, c) 2000, d) 3500;

3)will get a profit of 600 lari, is equal to
a) 3750, b) 3650, c) 3600, d) 3400;

4)will get a profit of 1300 lari, is equal to
a) 2500, b) 2000, c) 3000, d) 1500;

5)will get a profit of 2000 lari, is equal to
a) 625, b) 650, c) 600, d) 550.

5.2. Wholesale storehouse supplies 20 magazines. It is possible to get order for the next
day from each magazine with probability 0,5.

1) The number of hight probability of orders at the end of the day is equal to
a) 10, b) 11, c) 12, d) 13;

2) The probability corresponding with the number of hight probability of orders at the
end of the day is equal to

a) C10
20

1
220 , b) C10

20
1

210 , c) C10
20

1
230 , d) C5

20
1

220 .

5.3. There are three boxes numerated by numbers 1, 2, 3. The probabilities, that a
particle will be placed in the box 1, 2, 3 are equal to 0.3,0.4 and 0.3, respectively. The
probability that out of 6 particles 3 will be placed in box 1, 2 particles will be placed in box
2 and one particle will be find in box 3, is equal to

a) 3!
3!2!1! 0,3

40,42,
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b) 4!
3!2!1! 0,3

40,42,
c) 5!

3!2!1! 0,3
40,42,

d) 6!
3!2!1! 0,3

40,42.
5.4. Let Ω ⊂ Rm be a Borel subset such that 0 < bm(Ω) < +∞. Suppose that the

probability that a point will be choice from any Borel subset of A ⊂ Ω is proportional
to its Borel bm-measure. Let (Ai)1≤i≤n be a complete system of representatives. If we
accidentally choose n points from the region Ω, then the probability that ni points will be
chosen in region Ai for 1 ≤ i ≤ n, can be calculated by

a) n!
n1!×···×nk!bm(Ω)n ×bm(A1)

n1 ×·· ·×bm(Ak)
nk ,

b) m!
n1!×···×nk!bm(Ω)m ×bm(A1)

n1 ×·· ·×bm(Ak)
nk ,

5.5. We accidentally choose n point from a square with inscribed circle. The probability
that between randomly chosen n points exactly k points will be within the circle, is equal to

a) n!
k!(n−k)!(1−

π
4 )

k(π
4 )

n−k

b) n!
k!(n−k)!(1−

π
4 )

n−k(π
4 )

k

5.6. We accidentally choose n point from a cube, in which is inscribed a ball. The
probability that between n chosen points k points belong to the ball, is equal to

a) n!
k!(n−k)!(1−

π
6 )

k(π
6 )

n−k

b) n!
k!(n−k)!(1−

π
6 )

n−k(π
6 )

k

5.7. We accidentally choose n points in a square ∆, which is defined by

∆ = {(x,y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

The probability that coordinates (x,y) of k points satisfy the following condition

x+ y ≥ 1
2
,

is equal to
a) n!

k!(n−k)!(
1
8)

k(7
8)

n−k

b) n!
k!(n−k)!(

1
8)

n−k(7
8)

k

5.8. There are passed parallel lines on the plane such that the distant between neighbour-
ing lines is equal to 2a. We accidentally throw l(2l < 2a) long needle on the plane n-times.
The probability that the needle k-times (0 ≤ k ≤ n) intersects any of the above-mentioned
parallel line, is equal to

a) n!
k!(n−k)!(

2l
aπ)

k(aπ−2l
aπ )n−k

b) n!
k!(n−k)!(

2l
aπ)

n−k(aπ−2l
aπ )k



Chapter 6

Random Variables

Let (Ω,F ,P) be a probability space.

Definition 6.1 Function ξ : Ω → R called a random variable, if

(∀x)(x ∈ R →{ω : ω ∈ Ω, ξ(ω)< x} ∈ F ).

Example 6.1 Arbitrary random variable ξ : Ω → R can be considered as a definite rule of
dispersion of the unit mass of powder Ω on the real axis R, according to which each particle
ω ∈ Ω will be placed on particle M ∈ R with coordinate ξ(ω).

Definition 6.2 Function IA : Ω → R (A ⊂ Ω), defined by

IA(ω) =
{

1, if ω ∈ A
0, if ω ∈ A

,

is called the indicator of A.

Theorem 6.1 Let A ⊂ Ω. Then IA is a random variable if and only if A ∈ F .

Proof. The validity of Theorem 6.1 follows from the following formula

{ω : IA(ω)< x}=


/0, if x ≤ 0,
A, if 0 < x ≤ 1,
Ω, if 1 < x.

Definition 6.3 Random variable ξ : Ω → R is called a discrete random variable, if there ex-
ists a sequence of pairwise disjoint events (Ak)k∈N and a sequence of real numbers (xk)k∈N ,
such that:

39
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1) (∀k)(k ∈ N → xk ∈ R,Ak ∈ F ),
2) ∪k∈NAk = Ω,
3) ξ(ω) = ∑k∈N xkIAk(ω), ω ∈ Ω.

Definition 6.4 Random variable ξ : Ω → R is called a simple discrete random variable, if
there exists a finite sequence of pairwise disjoint events (Ak)1≤k≤n and a finite sequence of
real numbers (xk)1≤k≤n, such that:

1) (∀k)(1 ≤ k ≤ n → xk ∈ R,Ak ∈ F ));
2) ∪n

k=1Ak = Ω;
3) ξ(ω) = ∑n

k=1 xkIAk(ω), ω ∈ Ω.

Definition 6.5 A sequence of random variables (ξk)k∈N is called increasing if

(∀n)(∀ω)(n ∈ N,ω ∈ Ω → ξn(ω)≤ ξn+1(ω)).

The following theorem gives an interesting information about the structure of non-
negative random variables

Theorem 6.2 For arbitrary non-negative random variable ξ : Ω → R there exists an in-
creasing sequence of simple discrete variables (ξk)k∈N such that

(∀ω)(ω ∈ Ω → ξ(ω) = lim
n→∞

ξn(ω)).

Proof. For arbitrary n ∈ N we define a simple discrete variable n by the following formula

ξn(ω) =
n·2n

∑
k=1

k−1
2n · I{y:y∈Ω, k−1

2n ≤ξ(y)< k
2n }(ω)+n · I{y:y∈Ω,ξ(y)≥n}(ω).

Clearly,
(∀n)(n ∈ N → ξn(ω)≤ ξn+1(ω))

and
(∀ω)(ω ∈ Ω → ξ(ω) = lim

n→∞
ξn(ω)).

This ends the proof of theorem.

Theorem 6.3 For arbitrary random variable η : Ω → R there exists a sequence of simple
discrete variables (ηk)k∈N , such that

(∀ω)(ω ∈ Ω → η(ω) = lim
n→∞

ηn(ω)).
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Proof. For arbitrary random variable η : Ω → R we have the following representation η =
η++η−, where η+(ω) = max{η(ω),0} and η−(ω) = min{η(ω),0}. Using Theorem 6.2,
for η+ and −η− there exist increasing sequences of simple discrete variables (η+

k )k∈N
and (η−

k )k∈N , such that

(∀ω)(ω ∈ Ω → lim
k→∞

η+
k (ω) = η+(ω), lim

k→∞
η−

k (ω) =−η−(ω)).

It is easy to show that (ηn)n∈N = (η+
n −η−

n )n∈N is a sequence of simple discrete random
variables such that

(∀ω)(ω ∈ Ω → η(ω) = lim
n→∞

ηn(ω)).

This ends the proof of theorem.

Tests

6.1. Let ξ and η be discrete random variables for which the following representations

ξ(ω) = ∑
k∈N

xkIAk(ω), η(ω) = ∑
m∈N

ymIBm(ω) ( ω ∈ Ω)

are valid. Then

1) for random variable ξ+η we have

a) (ξ+η)(ω) = ∑k∈N ∑m∈N(xk + ym)IAk∩Bm(ω),

b) (ξ+η)(ω) = ∑k∈N ∑m∈N xkymIAk∩Bm(ω);

2) for random variable ξ ·η we have

a) (ξ ·η)(ω) = ∑k∈N ∑m∈N(xk + ym)IAk∩Bm(ω),

b) (ξ ·η)(ω) = ∑k∈N ∑m∈N xkymIAk∩Bm(ω);

3) if g : R → R is a measurable function, then

a) g(ξ)(ω) = ∑k∈N g(xk)IAk(ω),

b) g(ξ)(ω) = ∑k∈N g−1(xk)IAk(ω);

4) the following formula is valid

a) sin(ξ)(ω) = ∑k∈N sin(xk)IAk(ω),

b) sin(ξ)(ω) = ∑k∈N arcsin(xk)IAk(ω).

6.2. Let (Ak)k∈N be a sequence of events and let ξ be a random variable. Then

1)
a) ξ−1(∪k∈NAk) = ∪k∈Nξ−1(Ak),

b) ξ−1(∪k∈NAk) = ∩k∈Nξ−1(Ak);
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2)
a) ξ−1(∩k∈NAk) = ∩k∈Nξ−1(Ak),

b) ξ−1(∩k∈NAk) = ∪k∈Nξ−1(Ak);

3)
a) Ω\ξ−1(Ak) = ξ−1(Ω\Ak),

b) Ω\ξ−1(Ak) = ξ−1(Ak).

6.3.
1) If |ξ| is a random variable, then

a) ξ is a random variable,

b) it is possible that ξ is not a random variable;

2) if ξ is a random variable, then

a) ξ+ is a random variable;,

b) it is possible that ξ+ is not a random variable;

3) Let ξ and η be random variables and let A be any event. If Θ(ω) = ξ(ω)IA(ω)+
η(ω)IA(ω) (ω ∈ Ω), then

a) Θ is a random variable,

b) It is possible that Θ is not a random variable.



Chapter 7

Random variable distribution
function

Let (Ω,F ,P) be a probability space and let ξ : Ω → R be a random variable

Definition 7.1 Function ξ : Ω → R, defined by

(∀x)(x ∈ R → Fξ(x) = P({ω : ξ(ω)≤ x}),

where R = {−∞}∪R∪ {+∞}, is called a distribution function of random variable ξ.

Here we consider some properties of distribution functions.

Theorem 7.1 Fξ(+∞) = limx→+∞ Fξ(x) = 1.

Proof. Let consider an increasing sequence of real numbers (xk)k∈N such that
limk→+∞ xk =+∞. On the one hand, we have

{ω : ξ(ω)≤ xk} ⊆ {ω : ξ(ω)≤ xk+1} (k ∈ N).

On the other hand, we have ∪k∈N{ω : ξ(ω) ≤ xk} = Ω. Using the property of continuity
from below we get

lim
k→∞

P({ω : ξ(ω)≤ xk}) = P(∪k∈N{ω : ξ(ω)≤ xk}) = P(Ω) = 1,

i.e. limx→+∞ Fξ(x) = 1. Note that Fξ(+∞) = P({ω : ξ(ω)≤+∞}) = P(Ω) = 1. Finally we
get

Fξ(+∞) = lim
x→+∞

Fξ(x) = 1.

This ends the proof of theorem.

Theorem 7.2 Fξ(−∞) = limx→−∞ Fξ(x) = 0.

43
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Proof. Note that
Fξ(−∞) = P({ω : ξ(ω)≤−∞}) = P( /0) = 0.

Let consider a decreasing sequence of real numbers (xk)k∈N such that limk→+∞ xk =−∞. It
is easy to check the validity of the following conditions:

1) {ω : ξ(ω)≤ xk+1} ⊆ {ω : ξ(ω)≤ xk} (k ∈ N),
2) ∩k∈N {ω : ξ(ω)≤ xk}= /0.

Using the property of the continuity from above of P, we get

lim
k→∞

P({ω : ξ(ω)≤ xk}) = P(∩k∈N{ω : ξ(ω)≤ xk}) = P( /0) = 0,

i.e.,
lim

x→−∞
Fξ(x) = Fξ(−∞) = 0.

This ends the proof of theorem.

Theorem 7.3 Distribution function F(x) is an increasing function.

Proof. Let, x1 < x2. Let show the validity of the following non-strict inequality Fξ(x1) ≤
Fξ(x2). Indeed, using the validity of the following inclusion

{ω : ξ(ω)≤ x1} ⊆ {ω : ξ(ω)≤ x2}

and Property 2.5 (cf. Chapter 2), we have

P({ω : ξ(ω)≤ x1})≤ P({ω : ξ(ω)≤ x2}),

which is equivalent to condition Fξ(x1)≤ Fξ(x2). This ends the proof of theorem.

Theorem 7.4 Distribution function Fξ(x) is continuous from the right , i. e., for arbi-
trary sequence of real numbers (xk)k∈N for which xk > x (k ∈ N) and limk→∞ xk = x, the
following condition

lim
k→∞

Fξ(xk) = Fξ(x).

is fulfilled.

Proof. Without loss of generality, we can assume that (xk)k∈N is a decreasing sequence.
Then

{ω : ξ(ω)≤ x}= ∩k∈N{ω : ξ(ω)≤ xk},
{ω : ξ(ω)≤ xk+1} ⊆ {ω : ξ(ω)≤ xk} (k ∈ N).

Hence, using the property of the continuity from above of P, we obtain

lim
k→∞

P({ω : ξ(ω)≤ xk}) = P(∩k∈N{ω : ξ(ω)≤ xk}) = P({ω : ξ(ω)≤ x}),

which is equivalent to condition limk→∞ Fξ(xk) = Fξ(x) . This ends the proof of theorem.
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Let ξ be a discrete random variable, i.e., there exist an infinite family of pairwise
disjoint events (Ak)k∈N and an infinite family of real numbers (xk)k∈N , such that:

1) (∀k)(k ∈ N → xk ∈ R, Ak ∈ F ),
2) ∪k∈NAk = Ω,
3) ξ(ω) = ∑k∈N xkIAk(ω), ω ∈ Ω.
Then the distribution function of ξ is calculated by

Fξ(x) = ∑
xk≤x

P(Ak).

Remark 7.1 Assume that in column A of the Excel table we have entered values x1, · · · ,xn

of simple discrete random variable ξ. Assume also that in column B of Excel table we have
entered the corresponding probabilities p1, · · · , pn. Then the statistical function PROB(x1 :
xn; p1 : pn;y1;y2) calculates the following probability P({ω : ω ∈ Ω & y1 ≤ ξ ≤ y2}).

Let consider some examples.

Example 7.1 (Poisson 1 distribution ). We say that a discrete random variable ξ : Ω →
R defined by

ξ(ω) = ∑
n∈N

n · IAn(ω) (ω ∈ Ω)

generates a Poisson distribution with parameter λ (λ > 0) if the following condition

P(An) =
λn

n!
e−λ (n ∈ N),

i.e.,

P({ω : ξ(ω) = n}) = λn

n!
e−λ (n ∈ N).

Poisson distribution function F(x,λ) with parameter λ is defined by the following formula

F(x,λ) = ∑
n≤x

λn

n!
e−λ (x ∈ R).

Remark 7.2 POISSON(k;λ;0) calculates the probability that the Poisson random variable
with parameter λ will get value k. For example, POISSON(0;0;2;0) = 0,818730753.

Remark 7.3 POISSON(k;λ;1) calculates the probability that the Poisson random vari-
able with parameter will get an integer value in interval [0,k]. For example,
POISSON(2;0;2;1) = 0,998851519.

1Poisson; Semion Denis (21.6.1781 - 25.4.1840)-French mathematician, physician, the member of Paris
Academy of Sciences (1812), the honourable member of Petersburg Academy of Sciences (1826).
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Example 7.2 (The geometric distribution ). We say that a discrete random variable ξ : Ω →
R, defined by

ξ(ω) = ∑
n∈N

n · IAn(ω) (ω ∈ Ω)

generates the geometric distribution with parameter q (0 ≤ q ≤ 1) if the condition

P(An) = (1−q)qn−1 (n ∈ N),

i. e.,
P({ω : ξ(ω) = n}) = (1−q)qn−1 (n ∈ N).

The geometric distribution Fq with parameter q is defined by the following formula

Fq(x) = ∑
n≤x

(1−q)qn−1 (x ∈ R).

Example 7.3 (Leibniz 2 distribution). We say that a discrete random variable ξ : Ω → R,
defined by

ξ(ω) =
∞

∑
n=1

n · IAn(ω) (ω ∈ Ω)

generates the Leibniz distribution if the condition

P(An) =
1

n · (n+1)
(n ∈ N),

holds, i.e.

P({ω : ξ(ω) = n}) = 1
n · (n+1)

(n ∈ N).

The Leibniz distribution function is calculated by the following formula

F(x) = ∑
n≤x

1
n · (n+1)

=

=

{
0, if x < 1

1− 1
[x]+1 , if x ≥ 1 ,

where [x] denotes an integer part of x.

Example 7.4 (Hypergeometric distribution ). A simple discrete random variable

ξ(ω) =
n

∑
k=1

kIAk(ω) (ω ∈ Ω).

2Leibniz; Gottfried Wilhelm (1.7.1646, -14.11.1716)-German mathematician, the member of London Royal
Society (1673), the member of Paris Academy of Sciences (1700)
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is called distributed by hypergeometric law with parameters (n,a,A) if

P(Ak) =
Ck

aCm−k
A−a

Ck
A

(k = 0,1, · · · ,n)

where 0 ≤ n ≤ min{a,A−a}.
The hypergeometric distribution with parameters (n;a;A) is denoted by F((n;a;A) and is

defined by

F(n;a;A) = ∑
k≤x

Ck
aCm−k

A−a

Ck
A

.

Remark 7.4 HYPERGEOMDIST(k;n;a;A) calculates the value Ck
aCm−k

A−a
Ck

A
For example,

HYPERGEOMDIST(1;4;20;30) = 0,087575

Example 7.5 (Binomial distribution ). A simple discrete random variable

ξ(ω) =
n

∑
k=1

kIAk(ω) (ω ∈ Ω).

is called distributed by binomial law with parameter (n, p) if

P(Ak) =Ck
n · pk(1− p)n−k

where 0 < p < 1, 0 ≤ k ≤ n, i.e.,

P({ω : ξ(ω) = k}) =Ck
n · pk(1− p)n−k.

The binomial distribution with parameter (n, p) is denoted by Fn(x, p) and is defined
by

Fn(x, p) = ∑
k≤x

Ck
n · pk(1− p)n−k.

Remark 7.5 BINOMDIST(k;n; p;0) calculates the value Ck
n · pk(1 − p)n−k. For exam-

ple, BINOMDIST(3;10;0;5;0) = 0,1171875. BINOMDIST(k;n; p;1) calculates the sum
∑k≤x Ck

n · pk(1− p)n−k. For example, BINOMDIST(3;10;0;5;1) = 0,171875.

Remark 7.6 The random variable distributed by the binomial law with parameter (1; p) is
called also a random variable distributed by the Bernoulli law with parameter p. It can be
proved that the random variable distributed by the Binomial law with parameter (n; p) can
be presented as a sum of n independent random variables each of them is distributed by the
Bernoulli law with parameter p.
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Definition 7.2 Random variable ξ : Ω → R is called absolutely continuous 3 if there exists
a non-negative function fξ : R → R+ such that

(∀x)(x ∈ R → Fξ(x) =
∫ x

−∞
fξ(x)dx),

where R+ = [0,+∞[.

Function fξ(x) (x ∈ R) is called a density function of random variable ξ.

Theorem 7.5 Let fξ : R → R be a density function of random variable ξ : Ω → R Then∫ +∞

−∞
fξ(x)dx = 1.

Proof. Since limL→+∞ Fξ(L) = 1, we have limL→+∞
∫ L
−∞ fξ(x)dx = 1. The latter relation

means the validity of the following equality∫ +∞

−∞
fξ(x)dx = 1.

This ends the proof of theorem

Theorem 7.6 Let Fξ be a distribution function of an absolutely continuous random variable
ξ. Then for arbitrary real numbers x and y (x < y) we have

P({ω : x < ξ(ω)≤ y}) = Fξ(y)−Fξ(x),

If ξ is absolutely continuous random variable and fξ is its density function, then

P({ω : x < ξ(ω)≤ y}) =
∫ y

x
fξ(s)ds.

Proof.

P({ω : x < ξ(ω)≤ y}) = P({ω : ξ(ω)≤ y}\{ω : ξ(ω)≤ x}) =

= P({ω : ξ(ω)≤ y})−P({ω : ξ(ω)≤ x}) = Fξ(y)−Fξ(x).

If Fξ(t) =
∫ t
−∞ fξ(s)ds, then

Fξ(y)−Fξ(x) =
∫ y

−∞
fξ(s)ds−

∫ x

−∞
fξ(s)ds =

∫ y

x
fξ(s)ds.

This ends the proof of theorem.
3Note that the density function of the absolutely continuous random variable is defined exactly until null

sets (in the Lebesgue sense) of R. We recall the reader that X ⊂ R is null-set(in Lebesgue sense) if for arbitrary
ε > 0 there exists sequence (]ak;bk[)k∈N of open intervals such that X ⊆ ∪k∈N ]ak;bk[ and ∑k∈N bk −ak < ε.
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Remark 7.7 If fξ and Fξ are the density function and the distribution functions respec-
tively, then almost everywhere on R we have

dFξ(x)
dx

= fξ(x),

i.e., the linear measure l1 of a set
{x : x ∈ R, dFξ(x)

dx ̸= fξ(x) or dFξ(x)
dx does not exist }

is equal to zero, where l1 denotes one-dimensional Lebesgue measure on R.

Example 7.6 (Normal distribution). Absolutely continuous random variable ξ : Ω → R is
called normally distributed with parameters (m,σ2) (m ∈ R, σ > 0) if

fξ(x) =
1√
2πσ

e−
(x−m)2

2σ2 (x ∈ R).

The density function and the distribution function of the normally distributed random vari-
able with parameters (m,σ2) are denoted by ϕ(m,σ2) and Φ(m,σ2), respectively, i.e.,

ϕ(m,σ2)(x) =
1√
2πσ

e−
(x−m)2

2σ2 (x ∈ R),

Φ(m,σ2)(x) =
1√
2πσ

∫ x

−∞
e−

(t−m)2

2σ2 dt (t ∈ R).

When m = 0 and σ = 1, they are denoted as ϕ and Φ, respectively. ϕ and Φ are called the
density function and the distribution function of the standard normally distributed random
variable, respectively.

Remark 7.8 NORMDIST(x;m;σ;0) calculates the function

1√
2πσ

e−
(x−m)2

2σ2 .

For example, NORMDIST(0;0;1;0) = 0,3989428.
NORMDIST(x;m;σ;1) calculates the integral

1√
2πσ

∫ x

−∞
e−

(t−m)2

2σ2 dt.

For example, NORMDIST(0;0;1;1) = 0,5.
In addition, one can use Cumulative Normal Distribution Calculator, placed in the web

site
http://stattrek.com/Tables/Normal.aspx

Example 7.6 (The uniform distribution). Absolutely continuous random variable ξ : Ω →
R is called uniformly distributed on the interval [a,b] (a < b) if

fξ(x) =
{ 1

b−a , if x ∈ [a,b];
0, if x /∈ [a,b].
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Distribution function Fξ of the random variable uniformly distributed on [a,b] is defined
by

Fξ(x) =


0, if x < a;

x−a
b−a , if x ∈ [a,b];
1, if x > b.

Example 7.7 (Cauchy 4 distribution ). We say that an absolutely continuous random vari-
able ξ : Ω → R is distributed by the Cauch law, if

fξ(x) =
1

π(1+ x2)
(x ∈ R).

Its distribution function is defined by

Fξ(x) =
∫ x

−∞

1
π(1+ t2)

dt =
1
2
+

1
π

arctg(x) (x ∈ R).

Example 7.8 (Exponential distribution ). Absolutely continuous random variable ξ : Ω→R
is distributed by the exponential law with parameter λ, if

fξ(x) =
{

λe−λx, if x ≥ 0;
0, if x < 0.

Its distribution function Fξ is defined by

Fξ(x) =
{

1− e−λx, if x ≥ 0;
0, if x < 0.

Remark 7.9 EXPONDIST(x;λ;0) calculates value λe−λx for x > 0 and λ > 0. For example,
EXPONDIST(4;3;0) = 1,84326. EXPONDIST(x;λ;1) calculates value 1− e−λx for for
x > 0 and λ > 0. For example, EXPONDIST(4;3;1) = 0,999993856.

Example 7.9 (Singular distribution). Let consider closed interval [0,1] and let define a
sequence of functions constructed by G.Cantor 5. Let divide interval [0,1] into three equal
parts and define function

F1(x) =


1
2 , if x ∈]1

3 ,
2
3 [;

0, if x = 0;
1, if x = 1.

4Cauchy; Augustin Louis (21.8.1789, - 23.5.1857) -French mathematician, the member of Paris Academy
of Sciences (1816), the honourable member of Petersburg Academy of Sciences(1831).

5Cantor; George (19.2.(3.3).1845 -6.1.1918 )-German mathematician, professor of Gales University (1879-
1913). He had proved that a real numbers axis is not countable
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We continue its values on other points of [0,1] by linear interpolation. Further, let consider
the division of intervals [0, 1

3 ] and [2
3 ,1] into three equal parts and define

F2(x) =



1
2 , if x ∈]1

3 ,
2
3 [;

1
4 , if x ∈]1

9 ,
2
9 [;

3
4 , if x ∈]7

9 ,
8
9 [;

0, if x = 0;
1, if x = 1.

Analogously, we continue the values of F2 on other points of [0,1] by linear interpola-
tion. If we shall continue this process, then we shall get a sequence of functions (Fn)n∈N ,
which tends uniformly to concrete continuous function F on [0,1], the increase points 6 of
which is null-set in the Lebesgue sense. Indeed, we get that the Lebesgue measure of the
union of intervals

]
1
2
,
2
3
[, ]

1
9
,
2
9
[, ]

7
9
,
8
9
[, · · ·

on which function F is constant, is

1
3
+

2
9
+

4
27

+ · · ·= 1
3

∞

∑
n=0

(2
3
)n

= 1.

F is called a Cantor function.
Let consider one construction of the random variable, whose distribution function coin-

cides with Cantor function F .
We set

(Ω,F ,P) = ([0,1],B([0,1]),b1).

Let define a sequence of functions

(ξ k
2n
)n∈N, 1≤k≤n, & k∈2N+1 = (ξi)i∈I

defined by the following formulas

ξ 1
2
(ω) =

1
3

I{ 1
2}
(ω), (ω ∈ Ω),

ξ 1
4
(ω) =

1
9

I{ 1
4}
(ω), (ω ∈ Ω),

ξ 3
4
(ω) =

1
9

I{ 3
4}
(ω), (ω ∈ Ω),

ξ 1
8
(ω) =

1
27

I{ 1
8}
(ω), (ω ∈ Ω),

6x is called a point of increment for function F if F(x+ ε)−F(x− ε)> 0 for arbitrary ε > 0.
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ξ 3
8
(ω) =

1
27

I{ 3
8}
(ω), (ω ∈ Ω),

ξ 5
8
(ω) =

1
27

I{ 5
8}
(ω), (ω ∈ Ω),

ξ 7
8
(ω) =

1
27

I{ 7
8}
(ω), (ω ∈ Ω),

and so on.
We define ξCantor : Ω → R by the following formula

ξCantor(ω) = ∑
i∈I, i≤ω

ξi(ω).

It is easy to show that the distribution function generated by ξcantor cantor coincides with
Cantor function F .

Definition 7.3. A continuous distribution function, whose points of the increment have a
Lebesgue measure zero, is called singular. The corresponding random variable is also called
singular.

Theorem 7.7 Arbitrary distribution function F admits the following representation

F(x) = p1 ·F1(x)+ p2 ·F2(x)+ p3 ·F3(x) (x ∈ R),

where F1, F2, F3 are distribution functions generated by a discrete, an absolutely contin-
uous and a singular random variables, respectively and p1, p2, p3 are such non-negative
real numbers that p1 + p2 + p3 = 1.

Theorem 7.8 Let Fξ be a distribution function of ξ and a,b ∈ R,a ̸= 0. Then the
distribution function of η = aξ+b is calculated by

Fη(x) = Fξ(
x−b

a
) (x ∈ R).

Proof. Note, that

Fη(x) = P({ω : aξ(ω)+b ≤ x}) = P({ω : ξ(ω)≤ x−b
a

}) = Fξ(
x−b

a
).

Tests

7.1. The distribution law of random variable ξ(ω) = ∑4
k=1 xkIAk(ω) (ω ∈ Ω) is given by

the following table
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ξ −1 0 4 5
P 0,2 0,3 0,1 0,4

.

Then
1) Fξ(−3) is equal to

a) 0,2, b) 0,3, c) 0,1, d) 0;
2) Fξ(−1) is equal to

a) 0,2, b) 0,3, c) 0,1, d) 0;
3) Fξ(−0,3) is equal to

a) 0,2, b) 0,3, c) 0,1, d) 0;
4) Fξ(4) is equal to

a) 0,6, b) 0,4, c) 1, d) 0,8;
5) Fξ(6) is equal to

a) 0,6, b) 0,4, c) 1, d) 0,8.
7.2. The distribution function of ξ is defined by

Fξ(x) =


a, x < 0;
bx, 0 ≤ x < 1;
c, x ≥ 1.

Then
a) a = 1,b = 0,c = 0; b) a = 0,b = 1,c = 1;
c) a = 0,b = 0,c = 1; d) a = 1,b = 1,c = 0;

7.3. The probability that event A will occur in partial experiment is equal to 0,3. Let
ξ be the number of experiments in the three independent experiments, when the event A
occurred. Then the distribution of ξ is given by the following table

a)

ξ 0 1 2 3
P 0,343 0,441 0,189 0,027

,

b)

ξ 0 1 2 3
P 0,343 0,441 0,179 0,037

.

7.4. A shot gets 5 points if he strucks a target and loses 2 points in other case. The
probability that the shot strucks a target is equal to 0,5. The law of distribution of collected
points ξ in 4 shots is given by the following table

a)

ξ −8 −1 6 13 20
P 0,24 0,41 0,26 0,08 0,01

,

b)
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ξ −8 −1 6 13 20
P 0,2 0,44 0,25 0,09 0,01

.

7.5. The complect of 10 details contains 8 non-standard details. We accidentally choose
2 details. Then the law of distribution of number ξ of standard details in our probability
sampling is given by the following table

a)

ξ 0 1 2
P 1

45
16
45

28
45

,

b)

ξ 0 1 2
P 2

45
14
45

29
45

.

7.6. The probability that the price of goods will increase or decrease by 1 lari during
one unit of time is equal to 0,5 and 0,5, respectively. An initial price of goods is 10 lari.
Then the distribution law of price ξ after 4 unites of time is given by the following table

a)

ξ 6 8 10 12 14
P 0,24 0,41 0,26 0,08 0,01

,

b)

ξ 6 8 10 12 14
P 0,2 0,44 0,2 0,14 0,01

.

7.7. A particle is placed at the origin of the real axis. The probabilities of shifting to
the right or to the left along the real axis during one unit of time are equal (=0,5). The
distribution law of states ξ of the particle after 4 unit of time is given by the following table

a)

ξ −4 −2 0 2 4
P 0,0625 0,25 0,375 0,25 0,0625

,

b)

ξ −4 −2 0 2 4
P 0,0625 0,245 0,385 0,245 0,0625

.

7.8. Let ξ be a Poisson random variable with parameter λ = 1. Then the probability
that

1) ξ will obtain a value in the interval [2,5;5,5] is equal to
a) 0,079707, b) 0,13455, c) 0,11213, d) 0,28111;

2) 3ξ+4 will obtain a value in the interval [6,5;7,5] is equal to
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a) 0,367879, b) 0,13894, c) 0,13121, d) 0,28991.
7.9. Let ξ be a random variable uniformly distributed on [3,10]. Then
1) Fξ(4) is equal to

a) 1
7 , b) 1

8 , c) 1
9 , d) 1

10 ;
2) the probability that ξ will obtain a value in the interval [2,5;5,5] is equal to

a) 5
14 , b) 5

8 , c) 5
9 , d) 0,5;

3) the probability that 5ξ+5 will obtain a value in the interval [5;10] is equal to
a) 0, b) 1, c) 0,5, d) 0,8.

7.10. Let ξ be an exponential random variable with parameter λ(λ > 0).
1) If the probability that ξ will obtain a value in the interval [0,a] is equal 2

3 , then
a) a = ln(3)

λ , b) a = ln(4)
λ , c) a = ln(5)

λ , d) a = ln(6)
λ ;

2) The probability that 3ξ−4 will obtain a value in the interval [−5;5] is equal to
a) 1− e−3λ, b) 1− e−4λ, c) 1− e−5λ, d) 1− e−6λ.

7.11. Let ξ be a standard normal random variable.
1) If the probability that ξ will obtain a value in the interval [−a,a] is equal to 0,99,

then
a) a = 2,37, b) a = 2,57, c) a = 2,77, d) a = 2,97;

2) The probability that 3ξ+8 will obtain a value in the interval (−5,5) is equal to
a) 0,1586, b) 0,7413, c) 0,6413, d) 0,5413.

7.12. The amount of time you have to wait at a particular stoplight is uniformly dis-
tributed between zero and two minutes.

1) What is the probability that you have to wait than 30 seconds for light?
a) 0,5, b) 0,25, c) 0,75, d) 1,01;

2) What is the probability that you have to wait between 15 and 45 seconds for the light?
a) 0,25, b) 0,28, c) 0,64, d) 0,54.

3) Eighty percent of the time, the light will change before you have to wait how long?
a) 96 seconds , b) 28 seconds, c) 64 seconds, d) 54 seconds.

4) Sixty percent of the time, the light will change before you have to wait how long?
a) 72 seconds , b) 88 seconds, c) 64 seconds, d) 24 seconds.





Chapter 8

Mathematical expectation and
variance

Let (Ω,F ,P) be a probability space and ξ be a simple discrete random variable, i.e.,

(∀ω)(ω ∈ Ω → ξ(ω) =
n

∑
k=1

xk · IAk(ω)),

where xk ∈ R (1 ≤ k ≤ n) and (Ak)1≤k≤n is the complete system of representatives, i.e.
1) (∀k)(∀m)(1 ≤ k < m ≤ n → Ak ∩Am = /0),
2) ∪n

k=1 Ak = Ω.

Definition 8.1 A mathematical expectation of the simple random variable ξ is denoted by
Mξ and is defined by

Mξ =
n

∑
k=1

xk ·P(Ak).

Remark 8.1 Assume that in column A of Excel table we have entered values x1, · · · ,xn

of simple discrete random variable ξ. Assume also that in column B of Excel table
we have entered the corresponding probabilities p1, · · · , pn. Then the statistical function
SUMPRODUCT(x1 : xn; p1 : pn) calculates mathematical expectation of ξ.

Assume that η be an arbitrary random variable. Following Theorem 6.3 (cf. Chapter
6), there exists a sequence (ηn)n∈N of simple random variables such that

(∀ω)(ω ∈ Ω → η(ω) = lim
n→∞

ηn(ω)).

Definition 8.2 If there exists a finite limit limn→∞ Mηn, then this limit is called a math-
ematical expectation of η and is denoted by Mη (or

∫
Ω η(ω)dP(ω)). It can be proved that

57
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if there exists a finite limit limn→∞ Mηn , then this limit is same for arbitrary sequence of
simple random variables tending to η, which means a correctness of Definition 8.2.

Agreement. In the sequel we consider such a class of random variables each element ξ of
which satisfies the conditions: M(ξ)< ∞ and M(ξ2)< ∞.

Theorem 8.1 If fξ is a density function of an absolutely continuous random variable ξ,
then

Mξ =
∫ +∞

−∞
x fξ(x)dx.

Definition 8.3 Value M(ξ−Mξ)2 is called variance of ξ and is denoted by Dξ.

Definition 8.4 Value
√

Dξ is called a mean absolute deviation of the random variable ξ
and is denoted by σ(ξ).

Let consider some properties of mathematical expectations and variances of random
variables.

Theorem 8.2 Let ξ(ω) = c (ω ∈ Ω, c = const). Then Mξ = c.

Proof. Following the definition of the expectation of the simple discrete random variable,
we have

Mξ = M(c · IΩ(ω)) = c ·P(Ω) = c.

Theorem 8.3 M(ξ + η) = Mξ +Mη (i.e., mathematical expectation of the sum of two
random variables is equal to the sum of expectations of corresponding random variables ).

Proof. Using the approximation property of a random variable by a sequence of simple
discrete random variables and by the definition of the expectation of a random variable, it
is sufficient to prove this theorem in the case of two simple discrete random variables. Now
assume that ξ and η be simple random variables, i.e.

ξ(ω) =
p

∑
k=1

xk · IAk(ω), Ak ∩Am = /0, 1 ≤ k < m ≤ p,

∪p
k=1 Ak = Ω, xk ∈ R, k,m, p ∈ N,

η(ω) =
q

∑
n=1

yn · IBn(ω), Bk ∩Bm = /0, 1 ≤ k < m ≤ q,

∪p
n=1 Bn = Ω, yn ∈ R, k,m,q ∈ N,
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Note that

(ξ+η)(ω) =
p

∑
k=1

q

∑
n=1

(xk + yn) · IAk∩Bn(ω) (ω ∈ Ω),

It follows

M(ξ+η) =
p

∑
k=1

q

∑
n=1

(xk + yn) · IAk∩Bn(ω) =
p

∑
k=1

q

∑
n=1

(xk + yn) ·P(Ak ∩Bn)

=
p

∑
k=1

xk

q

∑
n=1

P(Ak ∩Bn)+
q

∑
n=1

yn

p

∑
k=1

P(Ak ∩Bn) =

=
p

∑
k=1

xkP(Ak)+
q

∑
n=1

ynP(Bn) = Mξ+Mη.

This ends the proof of theorem.

Definition 8.5 Two simple discrete random variables ξ and η are called independent, if

P({ω : ξ(ω) = xk, η(ω) = yn}) = P({ω : ξ(ω) = xk}) ·P({ω : η(ω) = yn}),

where 1 ≤ k ≤ p, 1 ≤ n ≤ q.

Definition 8.6 Two random variables ξ and η are called independent if

P({ω : ξ(ω)≤ x, η(ω)≤ y}) = P({ω : ξ(ω)≤ x}) ·P({ω : η(ω)≤ y}),

where x, y ∈ R.

Remark 8.1 Definitions 8.5 and 8.6 are equivalent for simple discrete random variables.

Theorem 8.4 Let ξ and η be independent random variables. Then there exist two sequences
(ξn)n∈N and (ηn)n∈N of simple discrete random variables such that :

1) ξn and ηn are independent for n ∈ N.
2) (ξ ·η)(ω) = limn→∞ ξn(ω) ·ηn(ω) (ω ∈ Ω).

Theorem 8.5 If ξ and η are independent simple discrete random variables, then

M(ξ ·η) = Mξ ·Mη,

i.e., mathematical expectation of the product of two independent simple discrete random
variables is equal to the product of expectations of corresponding simple random variables.
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Proof. Note that

(ξ ·η)(ω) =
p

∑
k=1

q

∑
n=1

(xk · yn) · IAk∩Bn(ω) (ω ∈ Ω).

It follows

M(ξ ·η) = M(
p

∑
k=1

q

∑
n=1

xk · yn · IAk∩Bn) =
p

∑
k=1

q

∑
n=1

xk · ynP(Ak ∩Bn) =

=
p

∑
k=1

q

∑
n=1

xk · ynP(Ak) ·P(Bn) =
p

∑
k=1

xkP(Ak) ·
q

∑
n=1

ynP(Bn) = Mξ ·Mη.

This ends the proof of theorem.

Using Theorems 8.4 and 8.5, we get the validity of the following theorem.

Theorem 8.6 If ξ and η are independent random variables, then

M(ξ ·η) = Mξ ·Mη,

i.e., mathematical expectation of the product of two random independent variables is equal
to the product of expectations of the corresponding variables.

Proof. If ξ and η are two independent random variables then using Theorem 8. 4, there
exist two sequences (ξn)n∈N and (ηn)n∈N of simple discrete random variables such that :

1) ξn and ηn are independent for n ∈ N.
2) (ξ ·η)(ω) = limn→∞ ξn(ω) ·ηn(ω) (ω ∈ Ω).
By using Definition 8.5 and the result of Theorem 8.5, we get

M(ξ ·η) = lim
n→∞

Mξn ·ηn = lim
n→∞

(
Mξn ·Mηn

)
=

= lim
n→∞

Mξn · lim
n→∞

Mηn = Mξ ·Mη.

This ends the proof of theorem.

Definition 8.7 A finite family of random variables ξ1, · · · ,ξn is called independent

P({ω : ξ1(ω)≤ x1, · · · ,ξn(ω)≤ xn}) =
n

∏
k=1

P({ω : ξk(ω)≤ xk}).

for every (xk)1≤k≤n ∈ (R∪{+∞}∪{−∞})n.

Definition 8.8 A sequence of random variables (ξn)n∈N is called independent if family
(ξk)1≤k≤n is independent for arbitrary n ∈ N.
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Remark 8.2 An analogy of Theorem 8.6 is valid for arbitrary finite family of random
variables, i.e., if (ξk)1≤k≤n is a family of independent random variables, then

M(
n

∏
k=1

ξk) =
n

∏
k=1

Mξk.

Theorem 8.7 If c ∈ R, then M(cξ) = cMξ, i.e., constant c goes out from the symbol of
mathematical expectation.

Proof. Note that a constant random variable c and an arbitrary random variable are inde-
pendent. Following Theorem 8.6, we have

M(c ·ξ) = Mc ·Mξ = cMξ.

This ends the proof of theorem.

Theorem 8.8 (Cauchy-Buniakovski 1inequality ). For arbitrary random variables ξ and η
the following inequality

|M(ξ ·η)| ≤
√

Mξ2 ·
√

Mη2

holds.

Proof. Let consider value M(ξ+xη)2. Clearly, on the one hand, we have M(ξ+xη)2 ≥ 0
for arbitrary x ∈ R. Hence, the following expression

M(ξ+ xη)2 = Mξ2 +2M(ξ ·η) · x+Mη2 · x2

can be considered as a non-negative quadratic polynomial. Hence, its determinant must be
non-positive, i.e.,

(2M(ξ ·η))2 −4Mη2 ·Mξ2 ≤ 0,

which is equivalent to the condition

|M(ξ ·η)| ≤
√

Mξ2 ·
√

Mη2

This ends the proof of theorem.

Theorem 8.9 The following formula for calculation of variance

Dξ = Mξ2 − (Mξ)2.

is valid for arbitrary random variable ξ.

1Buniakovski, Victor [4(16).12.1804 - 30.11 (12.12). 1889] -Russian mathematician, Academician of Pe-
tersburg Academy of Sciences (1830)).
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Proof. By the definition of variance of ξ, we have

Dξ = M(ξ−Mξ)2.

Using the properties of mathematical expectation Mξ we have

Dξ = M(ξ−Mξ)2 = M(ξ2 −2ξMξ+(Mξ)2) =

= M ξ2 −M(2ξMξ)+M((Mξ)2) =

= Mξ2 −2MξMξ+(Mξ)2 = Mξ2 − (Mξ)2.

This ends the proof of theorem.

Theorem 8.10 For arbitrary random variable ξ the following equality

Dξ = min
a∈R

M(ξ−a)2.

Proof. Let calculate a minimum value of function M(ξ−a)2. Clearly,

M(ξ−a)2 = M(ξ2 −2aξ+a2) = Mξ2 −2Mξa+a2,

i.e., M(ξ− a)2 is a quadratic polynomial with respect to a. Hence, point amin is defined
by

dM(ξ−a)2

and
=−2Mξ+2a = 0.

It follows that amin = Mξ, i.e.,

min
a∈R

M(ξ−a)2 = M(ξ−amin)
2 = M(ξ−Mξ)2 = Dξ.

This ends the proof of theorem

Theorem 8.11 For arbitrary random variable ξ the following conditions
1) Dξ ≥ 0,
2) Dξ = 0 ⇔ (∃c)(c ∈ R → P({ω : ξ(ω) = c}) = 1)
are fulfilled.

Proof. Since Dξ = M(ξ−Mξ)2 and (ξ−Mξ)2 ≥ 0, we easily deduce the validity of part
1). Let us prove part 2). Let P({ω : ξ(ω) = c}) = 1, then Mξ = c and Mξ2 = c2. Following
Theorem 8.9 we get Dξ = Mξ2−(Mξ)2 = c2−c2 = 0. Now, if Dξ = 0, then M(ξ−Mξ)2 =
0. i.e. P({ω : ξ(ω) = Mξ}) = 1. Hence, it is sufficient to set c = Mξ.

This ends the proof of Theorem.
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Theorem 8.12 Let c ∈ R and ξ be an arbitrary random variable. Then :
1) D(cξ) = c2Dξ,
2) D(c+ξ) = Dξ.

Proof. Following Theorem 8.7 and the definition of the variance, we get

D(cξ) = M(cξ−M(cξ))2 = M(cξ− cMξ)2 = M(c2(ξ−Mξ)2) =

= c2M(ξ−Mξ)2 = c2Dξ.

This ends the proof of the part 1).
By definition of the variance of ξ+ c, we get

D(c+ξ) = M((c+ξ)−M(c+ξ))2 = M(c+ξ−Mc−Mξ)2 =

= M(c+ξ− c−Mξ)2 = M(ξ−Mξ)2 = Dξ.

This ends the proof of the part 2) and theorem is proved.

Theorem 8.13 Let ξ and η be independent random variables. Then

D(ξ+η) = Dξ+Dη.

Proof. Since random variables ξ and η are independent, we get

D(ξ+η) = M((ξ+η)−M(ξ+η))2 = M((ξ−Mξ)+(η−Mη))2 =

= M((ξ−Mξ)2 +2(ξ−Mξ)(η−Mη)+(η−Mη)2) =

= M(ξ−Mξ)2 +2M((ξ−Mξ)(η−Mη))+M(η−Mη)2 =

= Dξ+2M(ξ−Mξ)M(η−Mη)+Dη =

= Dξ+2(Mξ−M(Mξ))(Mη−M(Mη))+Dη =

= Dξ+2(Mξ−Mξ)(Mη−Mη)+Dη = Dξ+Dη.

This ends the proof of theorem

Remark 8.3 Note that an analogy of Theorem 8.13 is valid for arbitrary finite family
(ξk)1≤k≤n of independent random variables, i.e., the following equality

D
n

∑
k=1

ξk =
n

∑
k=1

Dξk.

holds.



64 Gogi Pantsulaia, Zurab Kvatadze and Givi Giorgadze

Theorem 8.14 Let Fξ be a distribution function of the absolutely continuous random vari-
able ξ. Then the following formula for calculation of variance

Dξ =
∫ +∞

−∞
(x−Mξ)2 fξ(x)dx.

is valid.

Let consider some examples for calculation of mathematical expectations and mathe-
matical variances.

Example 8.1 (Poisson distribution). Let

ξ(ω) = ∑
n∈N

n · IAn(ω) (ω ∈ Ω)

be a discrete random variable distributed by Poisson law with parameter λ (λ > 0), i.e.,

P(An) = P({ω : ξ(ω) = n}) = λn

n!
e−λ (n ∈ N).

Then

Mξ =
∞

∑
n=0

n · λn

n!
e−λ =

∞

∑
n=1

n · λn

n!
e−λ =

= λ
∞

∑
n=1

n · λn−1

n!
e−λ = λe−λ

∞

∑
m=0

λm

m!
= λ.

On the other hand, we have

Mξ2 =
∞

∑
n=0

n2 · λn

n!
e−λ =

∞

∑
n=1

n2 · λn

n!
e−λ =

=
∞

∑
n=1

n · λn

(n−1)!
e−λ =

∞

∑
n=1

(n−1)λn

(n−1)!
e−λ+

+
∞

∑
n=1

λn

(n−1)!
e−λ = λ

∞

∑
m=0

mλm

m!
e−λ+

+λ
∞

∑
m=0

λm

m!
e−λ = λ2 +λ = λ(1+λ).

Following Theorem 8.9, we get

Dξ = Mξ2 − (Mξ)2 = λ(1+λ)−λ2 = λ.

Example 8.2 (Geometric distribution ). Let

ξ(ω) = ∑
n∈N

n · IAn(ω) (ω ∈ Ω)
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be a discrete random variable distributed by the geometric law with parameter q, where
(0 ≤ q ≤ 1), i.e.,

P(An) = P({ω : ξ(ω) = n}) = (1−q)qn−1 (n ∈ N).

Then

Mξ =
∞

∑
n=1

n(1−q)qn−1 = (1−q) ·
∞

∑
n=1

nqn−1 = (1−q)(
∞

∑
n=1

qn)
′
= (1−q)(

1
1−q

)
′
=

= (1−q) · 1
(1−q)2 =

1
1−q

.

On the other hand, we have

Mξ2 =
∞

∑
k=1

k2(1−q)qk−1 = (1−q) ·
∞

∑
k=1

(k · kqk−1) = (1−q) ·
∞

∑
k=1

(kqk)
′
=

= (1−q) ·
∞

∑
k=1

(kqk−1 ·q)′ = (1−q) ·
[
(

∞

∑
k=1

kqk−1)
′
q+

∞

∑
k=1

kqk−1]=
= (1−q)

[ 2q
(1−q)3 +

1
(1−q)2

]
=

2q
(1−q)2 +

1
(1−q)

.

Hence
Dξ = Mξ2 − (Mξ)2 =

2q
(1−q)2 +

1
(1−q)

− 1
(1−q)2 =

q
(1−q)2 .

Example 8.3 ( Leibniz 2 distribution). Let

ξ(ω) =
∞

∑
n=1

n · IAn(ω) (ω ∈ Ω)

be a discrete random variable distributed by the Leibniz law, i.e.,

P(An) = P({ω : ξ(ω) = n}) = 1
n · (n+1)

(n ∈ N).

Then
∞

∑
n=1

n · 1
n · (n+1)

=
∞

∑
n=1

1
(n+1)

= +∞.

Hence, mathematical expectation Mξ and variance Dξ are not finite.

Example 8.4 (Binomial distribution ) Let

ξ(ω) =
n

∑
k=0

kIAk(ω) (ω ∈ Ω)

2Leibniz, Gottfried Wilhelm (1.7.1646 - 14.11.1716)-German mathematician, the member of London Royal
Society (1673), the member of Paris Academy of Sciences (1700).
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be a simple random variable distributed by the Binomial law with parameters (n, p), i.e.,

P(Ak) = P({ω : ξ(ω) = k}) =Ck
n · pk(1− p)n−k,

where 0 ≤ p ≤ 1 and 0 ≤ k ≤ n. Then

Mξ =
n

∑
k=0

k ·Ck
n · pk(1− p)n−k =

n

∑
k=0

k · n!
k!(n− k)!

· pk(1− p)n−k =

= n · p
n

∑
k=1

(n−1)!
(k−1)!(n− k)!

· pk−1(1− p)(n−1)−(k−1) =

= n · p
n−1

∑
k−1=0

(n−1)!
(k−1)!(n− k)!

· pk−1(1− p)(n−1)−(k−1) =

= n · p
n−1

∑
s=0

(n−1)!
s!((n−1)− s)!

· ps(1− p)(n−1)−s =

= n · p
n−1

∑
s=0

Cs
n−1 · ps(1− p)(n−1)−s = n · p.

Remark 8.4 Let η be a random variable distributed by the Bernoulli law with parameter p,
i. e. ,

η(ω) = 0 · IA0(ω)+1 · IA1(ω) (ω ∈ Ω),

and
P(A0) = P({ω : η(ω) = 0}) = 1− p, P(A1) = P({ω : η(ω) = 1}) = p.

Then

Mη = 0 ·P({ω : η(ω) = 0})+1 ·P({ω : η(ω) = 1}) = 1 · (1− p)+1 · p = p.

On the other hand, we have

P({ω : η2(ω) = 0}) = 1− p, P({ω : η2(ω) = 1}) = p,

Hence

M(η2) = 0 ·P({ω : η2(ω) = 0})+1 ·P({ω : η2(ω) = 1}) = 1 · (1− p)+1 · p = p.

Finally we get
D(η) = Mη2 − (Mη)2 = p− p2 = p(1− p).

As simple discrete random variable distributed by Binomial law with parameter (n, p)
can be presented as a sum of n exemplars of independent simple discrete random variables
distributed by Bernoulli law with parameter p. Hence, following Theorem 8.3, we get

Mξ = M(
n

∑
k=1

ξk) =
n

∑
k=1

Mξk = np.
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Following Remark 8.3, we get

Dξ = D(
n

∑
k=1

ξk) =
n

∑
k=1

Dξk = np(1− p).

Example 8.5 (Normal distribution ). Let ξ : Ω → R be a normally distributed random
variable with parameter (m,σ2)(m ∈ R,σ > 0), i.e.,

fξ(x) =
1√
2πσ

e−
(x−m)2

2σ2 (x ∈ R).

Then, following Theorem 8.1, we get

Mξ =
∫ +∞

−∞
x fξ(x)dx =

∫ +∞

−∞
x · 1√

2πσ
e−

(x−m)2

2σ2 dx =

=
1√
2πσ

∫ +∞

−∞
(x−m) · e−

(x−m)2

2σ2 dx+
m√
2πσ

∫ +∞

−∞
·e−

(x−m)2

2σ2 dx =

=
1√
2πσ

∫ +∞

−∞
z · e−

z2

2σ2 dz+m = m.

Using the formula for calculation of variance, we get

Dξ =
∫ +∞

−∞
(x−m)2 fξ(x)dx =

∫ +∞

−∞
(x−m)2 fξ(x)dx =

=
∫ +∞

−∞
(x−m)2 · 1√

2πσ
e−

(x−m)2

2σ2 dx =
∫ +∞

−∞
z2 · 1√

2πσ
e−

z2

2σ2 dz,

where z = x−m. Setting t = z
σ , we get

Dξ =
σ2
√

2π

∫ +∞

−∞
t2e−

t2

2σ2 dz =
σ2
√

2π

√
2π = σ2,

because ∫ +∞

−∞
t2e−

t2

2σ2 dz =
√

2π.

Example 8.6 (Uniform distribution on [a; b]). Let ξ : Ω → R be a random variable uni-

formly distributed on [a,b] (a < b), i.e.,

fξ(x) =
{ 1

b−a , if x ∈ [a,b]
0, if x /∈ [a,b]

.

Then

Mξ =
∫ +∞

−∞
x fξ(x)dx =

∫ b

a
x · 1

b−a
dx =

x2

2(b−a)

∣∣b
a =

b2 −a2

2(b−a)
=

a+b
2

.
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On the other hand, we have

Mξ2 =
∫ +∞

−∞
x2 fξ(x)dx =

∫ b

a
x2 · 1

b−a
dx =

x3

3(b−a)

∣∣b
a =

b2 +ab+a2

3
.

Following Theorem 8.9, we get

Dξ = Mξ2 − (Mξ)2 =
a2 +ab+b2

3
− a2 +2ab+b2

4
=

(b−a)2

12
.

Example 8.7 (Cauchy distribution ). Let ξ : Ω → R be an absolutely continuous random

variable distributed by the Cauchy law, i.e.,

fξ(x) =
1

π(1+ x2)
(x ∈ R).

Note that the following indefinite integral∫ +∞

−∞
x fξ(x)dx =

∫ +∞

−∞
x

1
π(1+ x2)

dx

does not exists. Hence, we deduce that there exists no a mathematical expectation of the
random variable distributed by the Cauchy law.

Example 8.8 ( Exponential distribution ). Let ξ : Ω → R be an absolutely continuous
random variable distributed by the exponential law with parameter λ, i.e.,

fξ(x) =
{

λe−λx, if x ≥ 0;
0, if x < 0.

Then
Mξ =

∫ +∞

−∞
x fξ(x)dx =

∫ +∞

0
xλe−λxdx =

= λ
(
− 1

λ
xe−λx

∣∣∞
0 +

1
λ

∫ ∞

0
e−λxdx

)
= λ

(
− lim

l→∞

1
λ

l
eλl +

1
λ2

)
=

= λ
(
− lim

l→∞

1
λ

1
λeλl +

1
λ2

)
= λ · 1

λ2 =
1
λ
.

Using analogous calculations, we get

Dξ =
∫ +∞

−∞
x2 fξ(x)dx− (Mξ)2 = λ

∫ +∞

0
x2e−λxdx− 1

λ2 =

=
2
λ2 −

1
λ2 =

1
λ2
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Example 8.9 (Singular distribution). Let consider Cantor’s random variable ξCantor, de-
fined on [0,1]. It is easy to show that∫ 1

0
ξCantor(y)dy+

∫ 1

0
F(x)dx = 1,

where F denotes the Cantor function defined on [0,1]. Hence

MξCantor =
∫ 1

0
ξCantor(y)dy = 1−

∫ 1

0
F(x)dx.

Note that for set obtained by counterclockwise rotation about point (1
2 ,

1
2) on angle π of set

∆1 = {(x,y) : x ∈ [0,1],0 ≤ y ≤ F(x)} we have:
a) b2(∆1 ∩∆2) = 0,
b) b2(∆1) = b2(∆2),
c) ∆1 ∪∆2 = [0,1]× [0,1].

Hence b2(∆1) = b2(∆2) =
1
2 . It follows that

MξCantor = 1−
∫ 1

0
F(x)dx = 1−b2(∆1) = 1− 1

2
=

1
2
.

Now let calculate D(ξCantor). Note that πMξ2
Cantor coincides with the volume of the object,

obtained by rotation of the set ∆2 about the real axis 0Y , which is equal to the difference of
volumes of sets [0,1]× [0,1] and

[
1
3
,
2
3
]× [0,

1
2
]∪ [

1
9
,
2
9
]× [0,

1
4
]∪ [

7
9
,
8
9
]× [0,

3
4
]∪·· · ,

respectively. Hence,

Mξ2
Cantor = 1−

[1
2
(
(2

3
)2 −

(1
3
)2
)+

1
4
(
(2

9
)2 −

(1
9
)2
)+

3
4
(
(8

9
)2 −

(7
9
)2
)+ · · ·

]
.

Remark 8.5. (Physical sense of mathematical expectation and variance ). We remind the
reader that arbitrary random variable ξ : Ω → R can be considered as a special rule of
dispersion of the unit mass of powder Ω on the real axis R, by means of which every
particle ω ∈ Ω is send on the particle A ∈ R with coordinate ξ(ω). Here naturally arises the
following

Problem. What physical sense is put in Mξ and Dξ, respectively ?
It is well known from the course of theoretical mechanics that if mass pk is placed at

point xk ∈ R for 1 ≤ k ≤ n and ∑n
k=1 pk = 1, then center xc of the whole mass is calculated

by :

xc =
n

∑
k=1

xk · pk.

If the rule of dispersion of the unit mass of powder Ω on real axis R is a simple discrete
random variable given by the following table
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ξ x1 x2 · · · xn

P p1 p2 · · · pk
,

then Mξ = xc, which means that Mξ is a center of the unite mass distributed by the law
ξ on real axis R. Note that the physical sense of Mξ is same in the case of arbitrary random
variable ξ.

On the other hand, if ξ is a simple discrete random variable, then

Dξ =
n

∑
k=1

(xk −Mξ)2 pk.

Note that value Dξ depends on values ((xk −Mξ)2)1≤k≤n. The latter relation means that
the particles (xk)1≤k≤n of mass are concentrated nearer to its center Mξ as well a variance
Dξ is near at zero. In particular, if x1 = · · · = xn = Mξ, then Dξ = 0. Hence, variance Dξ
can be considered as a characterization why the particles of the unite mass of the powder
are removed about its center Mξ. As an example let consider random variables ξ1 and ξ2,
defined by

ξ1 −1 1
P 1

2
1
2

ξ2 −2 2
P 1

2
1
2

It is obvious that

Mξ1 = Mξ2 = 0,

Dξ1 = 1 · 1
2
+1 · 1

2
= 1,

Dξ2 = 4 · 1
2
+4 · 1

2
= 4.

Note that, on the one hand, the centers of the particles of the unit mass of powder
Ω dispersed by laws ξ1 and ξ2 , respectively, coincide and are equal to zero, i.e.,
Mξ1 = Mξ2 = 0. On the other hand, the particles of the unit mass of powder Ω dispersed
by rule ξ1 are more nearer to the center than the particles of the unit mass of powder Ω
dispersed by rule ξ1.

Remark 8.1 Let x1, ·,x2 be the results of observation on the random variable with finite
mathematical expectation and with finite variance. Then:

1) AVERAGE(x1 : xn) calculates 1
n ∑n

i=1 xi.
2) VARP(x1 : xn) calculates 1

n ∑n
i=1(xi − 1

n ∑n
j=1 x j)

2.
3) VAR(x1 : xn) calculates 1

n−1 ∑n
i=1(xi − 1

n ∑n
j=1 x j)

2.

Tests
8.1. Distribution laws of two independent random variables ξ and η are given in the

following tables
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ξ −1 0 1 2
P 0,3 0,2 0,1 0,4

,
η −1 0 −2
P 0,5 0,3 0,2

.

Then
1) M(3ξ−4η) is equal to

a) 5,3, b) 5,4, c) 5,5, d) 5,6;
2) D(3ξ−4η) is equal to

a) 20,4,3, b) 21,5, c) 22,6, d) 23,7;

8.2. Distribution function Fξ of the absolutely continuous random variable ξ has the
following form

Fξ(x) =


0, x ≤ 0
x2, 0 < x ≤ 1
1, x > 1

.

Then
1) M(3ξ−4) is equal to

a) 3, b) −3, c) 4, d) −4;
2) D(

√
18ξ−4) is equal to

a) 0,3, b) 0,7, c) 1, d) 1,3.

8.3. Let ξ1 be a random variable normally distributed with parameters (3; 25), ξ2 be
a random variable uniformly distributed in interval (18; 20) and ξ3 be a random variable
distributed by the Poisson law with parameter λ = 5. Then

1) M(1ξ1 +2ξ2 +3ξ3) is equal to
a) 34, b) 35, c) 36, d) 37;

2) If ξ1, ξ2, ξ3 are independent random variables, then D(1ξ1+2ξ2+3ξ3+4) is equal
to

a) 25 1
3 , b) 26 1

3 , c) 27 1
3 , d) 28 1

3 .

8.4. Distribution laws of two independent random variables ξ and η are given in the
following tables

ξ −1 1 2
P 0,2 0,1 0,7

,
η 2 3 −1
P 0,3 0,3 0,4

.

Then
1) distribution law of ξη is given in the following table
a)

ξη −3 −2 −1 1 2 3 4 6
P 0,06 0,34 0,04 0,08 0.03 0,03 0,21 0,21

,

b)

ξη −3 −2 −1 1 2 3 4 6
P 0,05 0,35 0,03 0,09 0.03 0,02 0,22 0,21

.
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2) distribution law ξ+η is given in the following table
a)

ξ+η −2 0 1 2 3 4 5
P 0,08 0,04 0,34 0,06 0.03 0,24 0,21

,

b)
ξ+η −2 0 1 2 3 4 5
P 0,06 0,06 0,34 0,06 0.02 0,25 0,21

.

8.5. You have recently joined a country club. The number of times you expect to play
golf in a month is represented by a random variable with a mean of 10 and a standard
deviation of 2.2. Assume you pay monthly membership fees of 500 dollars per month and
pay an additional 50 dollars per round of golf.

1) What is the average monthly bill from the country club?
a) 1000 dollars, b) 900 dollars, c) 800 dollars, d) 700 dollars;

2) What is the standard deviation for your average monthly bill from the country club?
a) 110 dollars, b) 200 dollars, c) 300 dollars, d) 400 dollars;

8.6. Let the random variable ξ follow a standard normal distribution.
1) What is P({ω : ξ(ω)> 1,2}) ?

a) 0,1151 , b) 0,2110 , c) 0,800, d) 0,567 ;
2) What is P({ω : ξ(ω)>−0,21}) ?

a) 0,5832 , b) 0,5678 , c) 0,5438, d) 0,5675 ;
3) What is P({ω : 0,33 < ξ(ω)< 0,45}) ?

a) 0,0443 , b) 0,0678 , c) 0,0438, d) 0,0675 ;
8.7. Let the random variable ξ follow a standard normal distribution with a mean of

17.1 and a standard deviation of 3,2.
1) What is P({ω : ξ(ω)> 16}) ?

a) 0,6331 , b) 0,4562 , c) 0,5678, d) 0,5678 ;
2) What is P({ω : 15 < ξ(ω)< 20}) ?

a) 0,5640 , b) 0,4321 , c) 0,2225, d) 0,1234 ;
8.8. Let the random variable ξ follow a standard normal distribution with a mean of

61.7 and a standard deviation of 5,2.
1) What is the value of k such that P({ω : ξ(ω)> k}) = 0,63 ?

a) 59,984 , b) 23,4562 , c) 40,5678, d) 90,5678 ;
2) What is the value of k such that P({ω : 59 < ξ(ω)< k}) = 0,54

a) 66,9 , b) 25,4 , c) 20,2, d) 50,1 ;
8.9. The number of orders that come into a mail-order sales office each month is nor-

mally distributed with with a mean of 298 and a standard deviation of 15,4.
1) What is the probability that in a particular month the office receives more than 310

orders?
a) 0,2177 , b) 0,4562 , c) 0,5678, d) 0,5678 ;

2) The probability is 0,3 that the sales office receives less than how many orders?
a) 290,0 , b) 125,4 , c) 220,2, d) 250,1 ;
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8.10. Investment A has an expected return of 8% with a standard deviation of 2,5%.
Investment B has an expected return of 6% with a standard deviation of 1,2%. Assume that
you invest equally in both investments and that that the rates of return are independent.

1) What is the expected return of your portfolio?
a) 6% , b) 7% , c) 8%, d) 9% ;

2) What is the standard deviation of the return on your portfolio? Assume that the
returns on the two investments are independent.

a) 2,77 , b) 5,45 , c) 2,21, d) 2,15 ;
8.11. The length of time it takes to be seated at a local restaurant on Friday night is

normally distributed with a mean of 15 minutes and a standard deviation of 4.75 minutes.
1) What is the probability that you have to wait more 20 minutes to be seated?

a) 0,1469 , b) 0,3669 , c) 0,4691, d) 0,9891;
2) What is the probability that you have to wait between 13 and 16 miutes to be seated?

a) 0,1469 , b) 0,3669 , c) 0,4691, d) 0,9891;
8.12. Let the random variable ξ follow a standard normal distribution. Find P({ω : 0 <

ξ(ω)< 0,57}) ?
a) 0,2157 , b) 0,4562 , c) 0,5678, d) 0,5678;

8.13. Let the random variable ξ follow a standard normal distribution. Find P({ω :
−2,21 < ξ(ω)< 0}) ?

a) 0,4864 , b) 0,4562 , c) 0,5678, d) 0,5178;
8.13. Let the random variable ξ follow a standard normal distribution. Find P({ω :

−1,33 < ξ(ω)< 0,78}) ?
a) 0,6905 , b) 0,6562 , c) 0,6678, d) 0,6178;

8.14. Let the random variable ξ follow a standard normal distribution. Find the value k
such that P({ω : ξ(ω)> k}) = 0,73 ?

a) −0,61 , b) −0,65 , c) 0,66, d) 0,61;





Chapter 9

Correlation Coefficient

Let (Ω,F ,P) be a probability space, and let ξ and η be such random variables that
0 < Dξ < ∞ and 0 < Dη < ∞.

Definition 9.1 Numerical value ρ(ξ,η), defined by

ρ(ξ,η) =
M(ξ−Mξ)(η−Mη)√

Dξ
√

Dη
,

is called a correlation coefficient between random values ξ and η.

Definition 9.2 Numerical value cov(ξ,η), defined by

cov(ξ,η) = M(ξ−Mξ)(η−Mη),

is called a covariation coefficient between random variables ξ and η.

Remark 9.1 Let (x1,y1), · · · ,(xn,yn) be the results of observations on the random vector
(X , ;Y ), every component of which has a finite mathematical expectation and a finite vari-
ance. Then:

1) CORREL(x1 : xn;y1 : yn) calculates the value ρn(X ,Y ), which is a good estimation
of correlation coefficient ρ(X ,Y ).

2) COVAR(x1 : xn;y1 : yn) calculates a value covn(X ,Y ), which is a good estimation of
covariation coefficient cov(X ,Y ).

Below in columns A and B we have entered the results of observations of random vec-
tor (X ,Y ), every component of which has a finite mathematical expectation and a finite
variance.

A B
7 2
11 5
6 6
7 7

.

75
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Then:
1) ρ4(X ,Y ) = CORREL(A1 : A4;B1 : B4) =−0,0695889;
2) cov4(X ,Y ) = COV(A1 : A4;B1 : B4) =−0,25.

We have the following propositions

Theorem 9.1 Let, ξ and η be such random variables that 0 < Dξ < ∞ and 0 < Dη < ∞.
Then |ρ(ξ,η)| ≤ 1.

Proof.

0 ≤ D(
ξ−Mξ√

Dξ
± η−Mη√

Dη
) = M(

ξ−Mξ√
Dξ

± η−Mη√
Dη

)2 = 2±2ρ(ξ,η),

Hence |ρ(ξ,η)| ≤ 1.

Theorem 9.2 If ξ and η are such independent random variables, that 0 < Dξ < ∞ and 0 <
Dη < ∞, then |ρ(ξ,η)|= 0.

Proof. From the independence of ξ and η we get that random variables ξ−Mξ√
Dξ

and η−Mη√
Dη

are also independent. By using Theorem 86(cf. Chapter 8) we deduce that

ρ = M
[(ξ−Mξ√

Dξ

)
·
(η−Mη√

Dη

)]
=

= M
(ξ−Mξ√

Dξ

)
·M

(η−Mη√
Dη

)
= 0.

Example 9.1 Note here that the inverse result given in Theorem 9.2 is not always valid,
i. e., the existence of such non-independent random variables ξ and η is possible that
0 < Dξ < ∞, 0 < Dη < ∞ and ρ(ξ,η) = 0. Indeed, assume

(Ω,F ,P) = ([0;1],B([0;1]),b1).

Let define random variables ξ and η with the following formulas:

ξ(ω) = 4 · I[0, 1
4 [
(ω)+0 · I[ 1

4 ,
1
2 [
(ω)−4 · I[ 1

2 ,
3
4 [
(ω)+0 · I[ 3

4 ,1]
(ω),

η(ω) = 0 · I[0, 1
4 [
(ω)+4 · I[ 1

4 ,
1
2 [
(ω)+0 · I[ 1

2 ,
3
4 [
(ω)−4 · I[ 3

4 ,1]
(ω).

Note that
Mξ = Mη = 0, Dξ = Dη = 8
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and

ρ(ξ,η) =
M(ξ−Mξ)(η−Mη)√

Dξ
√

Dη
=

=
Mξη

8
=

M0
8

= 0.

Now let show that ξ and η are not independent. Indeed, on the one hand we have

P({ω : ξ < 3,η < 3}) = P({ω : ξ(ω)< 3}∩{ω : η(ω)< 3}) =

P([
1
4

;1]∩ ([0;
1
4
[∪[1

2
;1])) = P([

1
2

;1]) =
1
2
,

On the other hand we have

P({ω : ξ < 3}) = 3
4
, P({ω : η < 3}) = 3

4
,

It follows that

P({ω : ξ < 3,η < 3}) = 1
2
̸= 3

4
× 3

4
= P({ω : ξ < 3}) ·P({ω : η < 3}).

Theorem 9.3 If the conditions of Theorem 9.1 are fulfilled then |ρ(ξ,η)|= 1 if and only if
there exist real numbers a ̸= 0 and b, such that

P({ω : η(ω) = aξ(ω)+b}) = 1.

Proof. Sufficient. Assume that

P({ω : η(ω) = aξ(ω)+b}) = 1.

We set Mξ = α and
√

Dξ = β.
Then

ρ(ξ,η) = M
ξ−α

β
· αξ+b−aα−b

|α|β
= sign(a).

Necessity. Assume that
∣∣∣ρ(ξ,η)∣∣∣= 1. Let consider the case when ρ(ξ,η) = 1. Then

D
(ξ−Mξ√

Dξ
− η−Mη√

Dη

)
= 2(1−ρ(ξ,η)) = 0.

Using the property of variance for concrete c ∈ R, we get

P
(
{ω :

ξ−Mξ√
Dξ

− η−Mη√
Dη

= c}
)
= 1,
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Hence,

P
(
{ω : ξ(ω) =

√
Dξ√
Dη

·η(ω)−
√

Dξ
( Mη√

Dη
− c

)
+Mξ}

)
= 1.

If ρ(ξ,η) =−1, we get

D
(ξ−Mξ√

Dξ
+

η−Mη√
Dη

)
= 2(1+ρ(ξ,η)) = 0.

Analogously, using the property of variance, we deduce an existence of such d ∈ R that

P
(
{ω :

ξ−Mξ√
Dξ

+
η−Mη√

Dη
= d}

)
= 1,

e.i.

P
(
{ω : ξ(ω) =−

√
Dξ√
Dη

·η(ω)+
√

Dξ
Mη√
Dη

+d
√

Dξ+Mξ}
)
= 1.

Remark 9.2 The correlation coefficient is a quantity characterization of the degree of the
dependence between two random variables. It can be considered as cosine of the angle
between them. Indeed, since |ρ(ξ,η)| ≤ 1, there exists a unique real number ϕ in interval
[0,π] , that cosϕ = ρ(ξ,η). This number ϕ is called an angle between random variables
ξ and η and is denoted with symbol (ξ̂,η) , i.e., (ξ̂,η) = arccos(ρ(ξ,η)).

The following geometrical interpretations of Theorems 9.2-9.3 are interesting:
1) If ξ and η are such independent variables that 0 < Dξ < ∞ da 0 < Dη < ∞, then

they are orthogonal , i.e., (ξ̂,η) = π
2 .

2) If (ξ̂,η) is equal to 0 or π, then a random variable ηis presented ( P-almost every-
where) as a linear combination of random variable ξ and constant random variable.

Example 9.2 Let consider a transmission system of the signal. Let denote a useful signal
with ξ. As here we have hindrances, we receive signal η(ω) = αξ(ω)+∆(ω), where α is a
coefficient of the intensification , ∆(ω) is a hindrance (white noise). Assume that variables
∆ and ξ are independent, Mξ = a,Dξ = 1 and M∆ = 0, D∆ = σ2. A correlation coefficient
between random variables ξ and η is calculated by

ρ(ξ,η) = M
(
(ξ−a) · αξ+∆−aα√

α2 +σ2

)
=

α√
α2 +σ2

.

If σ is smaller than α and is near at 0, then ρ(ξ,η) will be near at 1 and following Theorem
9.3, it is possible to restore ξ by η.

Let consider other numerical characterizations of random variables.
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Definition 9.2 A moment of order k (k ∈ N) of the random variable ξ is defined with Mξk

and is denoted with symbol αk , i.e.,

αk = Mξk (k ∈ N).

Definition 9.3 Value M(ξ−Mξ)k (k ∈ N) is called a central moment of order k and is
denoted with symbol µk, i.e.,

µk = M(ξ−Mξ)k (k ∈ N).

Remark 9.2 Note that variance Dξ is the central moment of the order two.

Let {ξ1, · · · ,ξn} be a finite sequence of random variables.

Definition 9.4 Value
Mξk1

1 · · ·ξkn
n

is called a mixed moment of order k1 + · · ·+kn and is denoted with symbol α(k1,··· ,kn), i.e.,

α(k1,··· ,kn) = Mξk1
1 · · ·ξkn

n (k1, · · · ,kn ∈ N).

Definition 9.5 Value
M(ξ1 −Mξ1)

k1 · · ·(ξn −Mξn)
kn

is called a central moment of order k1 + · · ·+kn and is denoted with symbol µ(k1,··· ,kn), i.e.,

µ(k1,··· ,kn) = M(ξ1 −Mξ1)
k1 · · ·(ξn −Mξn)

kn (k1, · · · ,kn ∈ N).

Definition 9.6 A skewness coefficient of the random variable ξ is called a number µ3
σ3 and

is denoted with symbol As, i.e.,
As =

µ3

α3 .

Remark 9.3 Let x1, · · · ,xn be the results of observations on the random variable X . Then
the statistical function KURT(x1 : xn) gives estimation of the excess of X . For example,
KURT(−1;−3;−80;−80) =−5,990143738.

Definition 9.7 An excess of the random variable ξ is called a number µ4
α4 −3 and is denoted

with symbol Ex, i.e.,
Ex =

µ4

α4 −3.

Remark 9.4 Let x1, · · · ,xn be the results of observations on the random variable X . Then
the statistical function SKEW(x1 : xn) gives estimation of the excess of X . For example,
SKEW(1;−1;3;−3;80;80;−80) =−0,17456105.
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Definition 9.8 If Fξ is a distribution function of ξ, then a median of random variable ξ is
called a number γ, for which the following condition is fulfilled

Fξ(γ−0)≤ 1
2

, Fξ(γ+0)≥ 1
2
,

where Fξ(γ−0) and Fξ(γ+0) denote the right and the left limits of function Fξ at point γ,
respectively.

Remark 9.5 Let x1, · · · ,xn be the values of the discrete random variable X such that
x1 < · · · < xn. Then median is xk + 1, when n = 2k + 1, and xk+xk+1

2 , when n = 2k. The
statistical function MEDIAN(x1 : xn) calculates the median of x1, · · · ,xn. For example,
MEDIAN(6;7;8;11) = 7,5 and MEDIAN(6;7;100) = 7.

Definition 9.9 A mode of simple discrete random variable X is called its such possible
meaning whose corresponding probability is maximal.

Definition 9.10 A mode of absolutely continuous random variable X is called a point of
the local maximum of the corresponding density function.

Remark 9.6 Let x1, · · · ,xn be the results of observations on the random variable X . Then
the statistical function MODE(x1 : xn) gives the estimation of the smallest mode of X . For
example, MODE(7;11;6;7;11;18;18) = 7.

Definition 9.11 A random variable is called unimodular, if it has only one mode. In other
cases, the random variable is called polymodular

Tests

9.1. Suppose that (Ω,F ,P) = ([0,1],B([0,1]),b1). Assume also that ξ and η are de-
fined with

ξ(ω) =


0, ω ∈ [1

2 ,
3
4 [

1, ω ∈ [0, 1
2 [

2, ω ∈ [3
4 ,1]

,

η(ω) =
{

2, ω ∈ [0, 1
2 [,

−1, ω ∈ [1
2 ,0]

.

Then the correlation coefficient ρ(ξ,η) is equal to
a) −0,2, b) −0,1, c) 0, d) 0,1.

9.2. The distribution law of the random variable ξ is given in the table

ξ −1 0 −1
P 0,6 0,1 0,3

.

Then
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1) M(ξ3) is equal to
a) −0,1, b) −0,2, c) −0,3, d) −0,4;

2) M(ξ−Mξ)4 is equal to
a) 1,948, b) 0,9481, c) 0,8481, d) 0,7481.

9.3. Let ξ be a random variable normally distributed with parameters (0,1). Then
1) α2k+1 is equal to

a) 1, b) 0, c) 2k+1, d) 2k;
2) µ2 is equal to

a) 0, b) 1, c) 2, d) 3;
3) γ is equal to

a) 0, b) 1, c) 2, d) 3;
4) mode is equal to

a) 0, b) 1, c) 2, d) 3.
9.4. ξ is a random variable uniformly distributed on (0,4). Then
1) µ2 is equal to

a) 6, b) 7, c) 8, d) 9;
3) median γ is equal to

a) 1, b) 2, c) 3, d) 4;
4) mode is equal to

a) [0,4], b) [0,3], c) [0,2], d) [0,1].
9.5. The distribution law of simple discrete random variable ξ is given in the following

table
ξ −1 2 3
P 0,3 0,4 0,3

.

Then
1)the median of ξ is equal to

a) 1, b) 2, c) 3, d) 4;
2) mode is equal to

a) −1, b) 2, c) 3, d) 4.

9.6. Distribution function Fξ of absolutely continuous random variable ξ is defined
with

Fξ(x) =


0, x ≤ 0,
x2, 0 < x ≤ 1,
1, x > 1.

Then
1) median γ is equal to

a)
√

2
2 , b)

√
3

3 , c)
√

5
5 , d)

√
7

7 ;
2) the mode of ξ is equal to

a) 1, b) 2, c) 3, d) 4.





Chapter 10

Random Vector Distribution
Function

Let (Ω,F,P) be the probability space and let (ξk)1≤k≤n be a finite family of random vari-
ables.

Definition 10.1 A mapping (ξ1, · · · ,ξn) : Ω → Rn, defined with

(∀ω)(ω ∈ Ω → (ξ1, · · · ,ξn)(ω) = (ξ1(ω), · · · ,ξn(ω))),

is called n-dimensional random vector.

Definition 10.2 A mapping Fξ1,··· ,ξn : Rn → R, defined with

(∀(x1, · · · ,xn))((x1, · · · ,xn) ∈ Rn → Fξ1,··· ,ξn((x1, · · · ,xn)) =

= P({ω : ξ1 < x1, · · · ,ξn < xn})),

is called a joint distribution function of the n-dimensional random vector (ξ1, · · · ,ξn).

Definition 10.3 Random vector (ξ1, · · · ,ξn) is called discrete if i-th component ξi is a
discrete random variable for every i with 1 ≤ i ≤ n.

Analogously we can define an absolutely continuous random vector.

The joint distribution function Fξ1,··· ,ξn has the following properties:

1. lim
xi→∞, 1≤i≤n

Fξ1,··· ,ξn((x1, · · · ,xn)) = 1,

2. lim
xi→−∞, 1≤i≤n

Fξ1,··· ,ξn((x1, · · · ,xn)) = 0.

Here naturally arises a question what is the probability that the 2-dimensional random vector
will obtain the value in the rectangular?

83
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The following result is valid.

Theorem 10.1 The following formula

(∀k)(∀xk)(∀yk)(1 ≤ k ≤ 2 & xk ∈ R & yk ∈ R & x1 < x2 & y1 < y2 →

P({ω : (ξ1,ξ2)(ω) ∈ [x1;x2[×[y1;y2[}) = Fξ1,ξ2((x2,y2))−Fξ1,ξ2((x1,y2))+

+Fξ1,ξ2((x1,y1))−Fξ1,ξ2((x2,y1)),

holds, where
[x1;x2[×[y1;y2[= {(x,y)|x1 ≤ x < x2, y1 ≤ y < y2}.

Proof. Setting

A(a,b) = {ω : (ξ1,ξ2)(ω) ∈]−∞;a[×]−∞;b[} (a ∈ R,b ∈ R),

we get

{ω : (ξ1,ξ2)(ω) ∈]x1;x2[×]x2;y2[}= (A(x2,y2) \A(x2,y1))\ (A(x1,y2) \A(x1,y1)).

Hence
P({ω : (ξ1,ξ2)(ω) ∈]x1;x2[×]x2;y2[}) = P((A(x2,y2) \A(x2,y1)))−
P((A(x1,y2) \A(x1,y1))) = (P(A(x2,y2))−P(A(x2,y1)))− (P(A(x1,y2))−
P(A(x1,y1))) = P(A(x2,y2))−P(A(x2,y1))−P(A(x1,y2))+P(A(x1,y1)) =

Fξ1,ξ2((x2,y2))−Fξ1,ξ2((x2,y1))−Fξ1,ξ2((x1,y2))+Fξ1,ξ2((x1,y1)).

This ends the proof of theorem.

Assume that (x,y) ∈ R2. If there exists double limit

lim
∆x,∆y→0

P({ω : (ξ1,ξ2)(ω) ∈ [x−∆x;x+∆x[×]y−∆y;y+∆y[})
4∆x∆y

,

then we say that joint distribution function Fξ1,ξ2 of 2-dimensional random vector (ξ1,ξ2)
has the density function fξ1,ξ2(x,y) at point (x,y) which is equal to the above-mentioned
double limit.

We have the following proposition

Theorem 10.2 If a function of two variables Fξ1,ξ2 has the continuous partial derivatives
of the first and second orders in any neighborhood of the point (x0,y0), then 2-dimensional
random vector (ξ1,ξ2) has density function fξ1,ξ2(x0,y0) at point (x0,y0), which can be
calculated with the following formula

fξ1,ξ2(x0,y0) =
∂2Fξ1,ξ2(x0,y0)

∂x∂y
=

∂2Fξ1,ξ2(x0,y0)

∂y∂x
.
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Proof. Using Theorem 10.1, we get

P({ω : (ξ1,ξ2)(ω) ∈ [x−∆x;x+∆x[×]y−∆y;y+∆y[}) =

= Fξ1,ξ2((x0 +∆x,y0 +∆y))−Fξ1,ξ2((x0 +∆x,y0 −∆y))−

Fξ1,ξ2((x0 −∆x,y0 +∆y))+Fξ1,ξ2((x0 −∆x,y0 −∆y)).

Without loss of generality, we can assume that points (x0 − ∆x,y0), (x0 − ∆x,y0 +
∆y), (x0,y0−∆y),(x0,y0+∆y) belong to such neighborhood of point (x0,y0) in which Fξ1,ξ2

has continuous partial derivatives of the first and second orders, respectively. Following La-
grange1 well known theorem, there exists θ1 ∈]0;1[ such that

[Fξ1,ξ2((x0 +∆x,y0 +∆y))−Fξ1,ξ2((x0 +∆x,y0 −∆y))]−

[Fξ1,ξ2((x0 −∆x,y0 +∆y))−Fξ1,ξ2((x0 −∆x,y0 −∆y))] =

= 2∆x · [
∂Fξ1ξ2

∂x
(x0 −∆x+2θ1∆x,y0 +∆y)−

∂Fξ1ξ2

∂x
(x0 −∆x+2θ1∆x,y0 −∆y)].

Again using the Lagrange theorem, we deduce an existence of θ2 ∈]0;1[ such that

P({ω : (ξ1,ξ2)(ω) ∈ [x−∆x;x+∆x[×]y−∆y;y+∆y[}) =

= 4 ·∆x ·∆y
∂2Fξ1,ξ2

∂y∂x
(x0 −∆x+2θ1∆x,y0 −∆y+2θ2∆y).

Clearly,

lim
∆x,∆y→0

P({ω : (ξ1,ξ2)(ω) ∈ [x−∆x;x+∆x[×]y−∆y;y+∆y[})
4∆x∆y

=

= lim
∆x,∆y→0

4 ·∆x ·∆y
∂2Fξ1 ,ξ2

∂y∂x (x0 −∆x+2θ1∆x,y0 −∆y+2θ2∆y)

4∆x∆y
=

=
∂2Fξ1,ξ2(x0,y0)

∂y∂x
.

The application of the well-known Schwarz 2 theorem ends the proof of theorem.

1Lagrange; Joseph Louis ( 25.1.1736 - 10.4.1813) - French mathematician, the member of Paris Academy
of Sciences (1772).

2Schwarz; Karl Hermann Amandus (25.1.1843 30.11.1921) German mathematician, the member of Berlin
Academy of Sciences (1893).
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Example 10.1 2-dimensional random vector (ξ1,ξ2) is called distributed by Gaussian law,
if its density function fξ1,ξ2 has the following form

fξ1,ξ2(x1,x2) =
1

2πσ1σ2
e
− (x1−a1)

2

2σ2
1

− (x2−a2)
2

2σ2
2 (x1,x2 ∈ R),

where a1,a2 ∈ R,σ1 > 0,σ2 > 0.

Here we present some theorems (without proofs).

Theorem 10.3 Let D ⊆ R2 be some region of R2 and fξ1,ξ2 be a density function of 2-
dimensional random vector (ξ1,ξ2). Then the following formula

P({ω : (ξ1,ξ2)(ω) ∈ D}) =
∫ ∫

D
fξ1,ξ2(x,y)dxdy.

Definition 10.4 A mapping g : Rn → R is called measurable, if the following condition

(∀x)(x ∈ R →{(x1, · · · ,xn) : g(x1, · · · ,xn)< x} ∈ B(Rn)).

holds. It is easy to show that g : Rn → R is measurable if and only if when

(∀B)(B ∈ B(R)→ g−1(B) ∈ B(Rn)),

where g−1(B) = {(x1, · · · ,xn) : g(x1, · · · ,xn) ∈ B}.

Theorem 10.4 Let fξ1,··· ,ξn be a density function of random vector (ξ1, · · · ,ξn). Then for
arbitrary measurable mapping g : Rn → R and for arbitrary B ∈ B(R) we have:

P({ω : g((ξ1, · · · ,ξn)(ω)) ∈ B}) =
∫

· · ·
∫

g−1(B)
fξ1,··· ,ξn(x1, · · · ,xn)dx1 · · ·dxn.

Theorem 10.5 Let (ξk)1≤k≤n be a family of independent random variables and fξ1,··· ,ξn be
the density function of random vector (ξ1, · · · ,ξn). If fξi (1 ≤ i ≤ n) is the density function
of ξi for 1 ≤ i ≤ n, then

fξ1,··· ,ξn(x1, · · · ,xn) = ∏
1≤i≤n

fξi(xi) ((x1, · · · ,xn) ∈ Rn).

Definition 10.5 Let (ξk)1≤k≤n be a family of independent random variables and let
ξk be normally distributed random variable with parameter (ak,σ2

k) for 1 ≤ k ≤ n. Then
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(ξ1, · · · ,ξn) is called n-dimensional Gaussian vector and its density function, following
Theorem 10.5, has the following form

fξ1,··· ,ξn(x1, · · · ,xn) =
1

(
√

2π)n ∏n
k=1 σk

e
−∑n

k=1
(xk−ak)

2

2σ2
k ,

where (x1, · · · ,xn) ∈ Rn, a1, · · · ,an ∈ R,σ1 > 0, · · · ,σn > 0.
n-dimensional Gaussian vector (η1, · · · ,ηn) is called standard if

fη1,··· ,ηn(x1, · · · ,xn) =
1

(
√

2π)n
e−∑n

k=1
x2
k
2 ((x1, · · · ,xn) ∈ Rn).

Definition 10.6 Assume that (ξ1, · · · ,ξn) is a Gaussian random vector. Function Pξ1,··· ,ξn

defined with

(∀B)(B ∈ B(Rn)→ Pξ1,··· ,ξn(B) = P({ω : (ξ1(ω), · · · ,ξn(ω)) ∈ B}),

is called n-dimensional Gaussian probability measure.

By using Theorem 10.3, we have

Pξ1,··· ,ξn(B) =

n︷ ︸︸ ︷∫
· · ·

∫
B

1
(
√

2π)n ∏n
k=1 σk

e
−∑n

k=1
(xk−ak)

2

2σ2
k dx1 · · ·dxn.

Let consider some examples.

Example 10.3 Let (ξ1, · · · ,ξn) be the n-dimensional Gaussian standard probability measure
and ∏n

k=1[ak,bk]⊂ Rn . Then

Pξ1,··· ,ξn(
n

∏
k=1

[ak,bk]) =
n

∏
k=1

[Φ(bk)−Φ(ak)].

Example 10.4 (distribution χ2
n). Let (ξ1, · · · ,ξn) be the n-dimensional Gaussian standard

random vector and V n
ρ be n-dimensional sphere with radius ρ and with center O(0, · · · ,0)∈

Rn. Then

Pξ1,··· ,ξn(V
n
ρ ) =

n︷ ︸︸ ︷∫
· · ·

∫
Vρ

1
(
√

2π)n
e−∑n

k=1
x2
k
2 dx1 · · ·dxn =

=
1

2
n
2−1Γ(n

2)
×

∫ ρ

0
rn−1 · e−

r2
2 dr,
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where Γ(·) is Eulerian integral of the second type. Distribution function Fχ2
n

of random
variable χ2

n = ξ2
1 + · · ·+ ξ2

n is called χ2
n(chi square) -distribution, which has the following

form:

Fχ2
n
(x) =

{
0, if x ≤ 0,

1
2

n
2 −1Γ( n

2 )
×

∫√
x

0 rn−1 · e− r2
2 dr, if x > 0.

Hence

fχ2
n
(x) =

{
0, if x ≤ 0,

1
2

n
2 −1Γ( n

2 )
× x

n−1
2 · e− x

2 1
2
√

x , if x > 0 =

=

{
0, if x ≤ 0,

1
2

n
2 Γ( n

2 )
× x

n
2−1 · e− x

2 , if x > 0.

Remark 10.1 We have applied the validity of the following fact

n︷ ︸︸ ︷∫
· · ·

∫
Vρ

f (

√
n

∑
k=1

x2
k)dx1 · · ·dxn = 2 · π n

2

Γ(n
2)

·
∫ ρ

0
rn−1 f (r)dr,

where f is an arbitrary continuous function defined on Vρ.

Remark 10.2 Let ξ1, · · · ,ξm be an independent family of standard normally distributed
real-valued variables. Then CHIDIST(x;n) calculates value

P({ω : ω ∈ Ω & χ2
n(ω)> x})

for x ≥ 0. For example,CHIDIST(2;10) = 0,996340153.
If we denote by Γn a standard n-dimensional Gaussian measure on Rn, then the com-

mand 1−CHIDIST(r2;n) calculates its value on n-dimensional ball V (r;n) with radius
r and the center at the zero of Rn. For example, Γ5(V (2;5)) = 1 − CHIDIST(22;5) =
0,450584038.

Example 10.5 Let (ek)1≤k≤m (m ≤ n) be a family of linearly independent normalized
vectors in Rn and let ξ1, · · · ,ξm be the family of one-dimensional independent Gaussian
random variables defined on (Ω,F ,P). Then measure µ , defined with

(∀X)(X ∈ B(Rn)→ µ(X) = P({ω :
m

∑
k=1

ξk(ω)ek ∈ X})),

is a Gaussian measure defined on Rn . Note that the converse relation is valid, i.e., for an
arbitrary Gaussian measure on Rn we have an analogous representation.
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Example 10.6 (Student’s distribution tn). Let ξ1, · · · ,ξm be the independent family of one-
dimensional standard Gaussian random variables defined on (Ω,F ,P) and G : Rn+1 → be
a measurable function defined with

g(x1, · · · ,xn+1) =
xn+1√
∑n

k=1 x2
k

n

.

The random variable tn = g(ξ1, · · · ,ξn+1) is called Students random variable with degree of
freedom n. Following Theorem 10.4, we have

Ftn(x) =
∫

g−1([−∞;x))

1
(2π) n

2
e−∑n

k=1 x2
k dx1 · · ·dxn.

It can be proved that

ftn(x) =

{
0, if x ≤ 0,

1√
nx

Γ( n+1
2

Γ( n
2 )

× (1+ x2

n )
− n+1

2 , if x > 0.

It is reasonable to note that M(tn) = 0, when n > 1. For variance D(tn) we have

D(tn) =
{ n

n−1 , if n > 2,
+∞, if 0 < n ≤ 2.

Remark 10.3 Statistical functions TDIST(x;n;1) and TDIST(x;n;2) calculate the values
P({ω : tn(ω) > x}) and P({ω : |tn(ω)| > x}), respectively. For example, TDIST(3;4;2) =
0,19970984 and TDIST(3;4;1) = 0,039941968.

Example 10.7 (Fisher’s distribution Fξ(k1;k2). ). Let ξ1, · · · ,ξk1+k2 be the independent fam-
ily of one-dimensional standard Gaussian random variables defined on (Ω,F ,P) and
G : Rk1+k2 → R be a measurable function defined with

g(x1, · · · ,xk1+k2) =

∑
k1
i=1 x2

i
k1

∑
k1+k2
i=k1+1 x2

i

k2

.

The random variable ξ(k1;k2) = g(ξ1, · · · ,ξk1+k2) is called Fishers random variable with de-
grees of freedom k1 and k2.

Following Theorem 10.4, we have

Fξ(k1;k2)
(x) =

∫
g−1([−∞;x))

1
(
√

2π)n
e−∑n

k=1
x2
k
2 dx1 · · ·dxn.

It can be proved that
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fξ(k1;k2)
(x) =

 0, if x ≤ 0,

2( k1
k2
)

k1
k2

Γ( k1+k2
2 )

Γ( k1
2 )Γ( k2

2 )
× xk1−1(1+ k1

k2
x2)−

k1+k2
2 , if x > 0.

Remark 10.4 The statistical function FDIST(x;k1;k2) calculates value P({ω : ξ(k1;k2) < x}).
For example, FDIST(2;5;6) = 0,211674328.

We have the following proposition.

Theorem 10.6 Let ξ1 and ξ2 be the independent random variables with density functions
fξ1 and fξ2 , respectively. Then distribution function Fξ1+ξ2 and density function fξ1+ξ2 of
sum ξ1 +ξ2 are defined with:

Fξ1+ξ2(x) =
∫ x

−∞
dx2

∫ +∞

−∞
f1(x1) f2(x2 − x1)dx1,

fξ1+ξ2(x) =
∫ +∞

−∞
f1(x1) f2(x2 − x1)dx1.

Proof. Sum ξ1+ξ2 can be represented as continuous image g of the random vector (ξ1,ξ2),
where g(x1,x2) = x1 + x2. We set B = (−∞,x). Using theorems 10.4 and 10.5, we get

Fξ1+ξ2(x) = P({ω : ξ1(ω)+ξ2(ω)< x}) = P({ω : g(ξ1,ξ2)(ω)< x}) =

=
∫ ∫

g−1((−∞;x))
fξ1(x1) fξ2(x2)dx1dx2.

Note that
g−1((−∞;x)) = {(x1,x2)|x1 + x2 < x},

Hence
Fξ1+ξ2(x) =

∫ ∫
{(x1,x2)|x1+x2<x}

fξ1(x1) fξ2(x2)dx1dx2 =

=
∫ +∞

−∞
dx1

∫ x−x1

∞
dx2 fξ1(x1) fξ2(x2) =

∫ +∞

−∞
dx1

∫ x−x1

∞
d(x1 + x2) fξ1(x1) fξ2(x2)

=
∫ +∞

−∞
dx1

∫ x

∞
dτ fξ1(x1) fξ2(τ− x1) =

∫ x

−∞
dτ

∫ +∞

∞
fξ1(x1) fξ2(τ− x1)dx1 =∫ x

−∞
dx2

∫ +∞

∞
fξ1(x1) fξ2(x2 − x1)dx1.

Clearly, for ℓ1-almost every x point of R the following equality

fξ1+ξ2(x) =
dFξ1+ξ2(x)

dx
=

∫ +∞

−∞
fξ1(x1) fξ2(τ− x1)dx1.
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holds. The integral standing in the right in the above equality is called winding of functions
f1 and f2 and is denoted by fξ1 ∗ fξ2 . It is not difficult to show that fξ1 ∗ fξ2 = fξ2 ∗ fξ1 , i.e.∫ +∞

−∞
fξ1(x1) fξ2(x− x1)dx1 =

∫ +∞

−∞
fξ1(x− x1) fξ2(x1)dx1.

Tests

10.1. Assume that the distribution of 2-dimensional discrete random vector (ξ1,ξ2) is
given in the following table

(ξ1,ξ2) (4,3) (4,10) (4,12) (5,3) (5,12)
P 0,17 0,13 0,25 0,2 0,25

.

Then
1) the distribution law of ξ1 is given in the table
a)

ξ1 4 5
P 0,55 0,45

,

b)
ξ1 4 5
P 0,45 0,55

;

2) the distribution law of ξ2 is given in the table
a)

ξ2 3 10 12
P 0,37 0,13 0,5

,

b)
ξ2 3 10 12
P 0,35 0,15 0,5

;

3) Fξ1,ξ2(4,5;10,5) is equal to
a) 0,36, b) 0,34, c) 0,32, d) 0,3;

4) P({ω : (ξ1(ω),ξ2(ω)) ∈ [1,5]× [5,8]}) tolia
a) 0, b) 0,38, c) 0,37, d) 0,36.

10.2.Distribution laws of two independent random variables ξ1 and ξ2 are given in the
following tables

ξ1 2 3
P 0,7 0,3

,
ξ2 −2 2
P 0,3 0,7

,

respectively. Then the distribution law of ξ1 ·ξ2 is given in the table
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a)
ξ1 ·ξ2 −6 −4 4 6
P 0,08 0,22 0,48 0,22

,

b)
ξ1 ·ξ2 −6 −4 4 6
P 0,09 0,21 0,49 0,21

.

10.3. A distribution function of 2-dimensional random vector (ξ1,ξ2) is defined with
the following formula

Fξ1,ξ2(x1,x2) =

{
(1− e−4x1)(1− e−2x2), x1 ≥ 0, x2 ≥ 0,

0, x1 < 0 an x2 < 0.

Then
a)

fξ1,ξ2(x1,x2) =

{
(8e−4x1−2x2), x1 ≥ 0, x2 ≥ 0,

0, x1 < 0 an x2 < 0,

b)

fξ1,ξ2(x1,x2) =

{
(6e−4x1−2x2), x1 ≥ 0, x2 ≥ 0,

0, x1 < 0 an x2 < 0.

10.4. The density function of 2-dimensional random vector (ξ1,ξ2) is defined with

fξ1,ξ2(x1,x2) =
20

π2(16+ x2
1)(25+ x2

2)
((x1,x2) ∈ R2).

Then
a)

Fξ1,ξ2(x1,x2) = (
1
2
+

1
π

arctg(
x1

8
)(

1
2
+

1
π

arctg(
x2

10
)),

b)

Fξ1,ξ2(x1,x2) = (
1
2
+

1
π

arctg(
x1

4
)(

1
2
+

1
π

arctg(
x2

5
)).

10.5. It is known that coefficients of the general solution of differential equation y
′′
+

5y
′
+6y = 0 are independent random variables uniformly distributed in interval (0,1). The

probability that a general solution of the differential equation will get value ≥ 0,5 at point
x = 0, is equal to

a) 0,5, b) 0,875, c) 0,6, d) 0,75.

10.6. It is known that coefficients of the general solution of the differential equation
y
′′
+ y = 0 are independent random variables normally distributed with parameters (0,1).

Then the probability that the general solution y satisfies the following conditions

y(0) ∈ (0,2) & y(−π
2
) ∈ (−2,1)
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is equal to
a) 0,2245785, b) 0,7767678, c) 0,3905882, d) 0,8598760.

10.5. It is known that coefficients of the general solution of the differential equation
y
′′ − ln6y

′
+ ln2 ln3y = 0 are independent random variables uniformly distributed on the

interval (0,1). The probability that general solution y satisfies the following conditions

y(0) ∈ (−∞,1) & y(−1) ∈ (−∞,2)

is equal to
a) 1

2 , b) 1
3 , c) 1

4 , d) 1
5 .





Chapter 11

Chebishev’s inequalities

Let (Ω,F,P) be a probability space. The following proposition is valid.

Theorem 11.1 (Chebishev’s 1 inequality ). For arbitrary non-negative random variable
and for arbitrary positive real number the following inequality

P({ω : ξ(ω)≥ ε})≤ Mε
ε
.

holds.

Proof. Clearly

Mξ = M(ξ · IΩ) = M(ξ · I{ω:ξ(ω)≥ε}+ξ · I{ω:ξ(ω)<ε})≥

≥ M(ξ · I{ω:ξ(ω)≥ε})≥ ε ·P({ω : ξ(ω)≥ ε}).

Finally, we get

P({ω : ξ(ω)≥ ε})≤ Mε
ε
.

This ends the proof of theorem.

Theorem 11.2 (Chebishev’s II inequality). For arbitrary random variable η and for
arbitrary positive number δ > 0 the following inequality

P({ω : |η(ω)−Mη| ≥ σ})≤ Dη
σ2 .

holds.
1P:Chebishev [4(16).5.1821. - 26.11.(8.12)1894] - Russian mathematician, Academician of Petersburg

Academy of Sciences (1856), of Berlin Academy of Sciences (1871) and of Paris Academy of Sciences (1874).

95
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Proof. We set : ξ(ω) = (η(ω)−Mη)2, ε = σ2. Following Chebishevs I inequality, we get

P({ω : (η(ω)−Mη)2 ≥ σ2})≤ M(η−Mη)2

σ2 .

Note that
{ω : (η(ω)−Mη)2 ≥ σ2}= {ω : |η(ω)−Mη| ≥ σ}.

Finally, we get

P({ω : |η(ω)−Mη| ≥ σ})≤ Dη
σ2 .

Proof. Example 11.1 Assume that we survey the moon and measure its diameter. Assume
also that the results of survey are independent random variables ξ1, · · · ,ξn. Assume that
a is the value of moons diameter. Then |ξk(ω)− a| will be mistake in the k-th experi-
ment (1 ≤ k ≤ n). The value

√
M(ξk −a)2 =

√
Dξk will be error mean square deviation.

Assume also that the following conditions
a) Mξk = a,
b)

√
Dξk = 1,

c) (ξk)1≤k≤n are independent.
It is natural that value Jn =

1
n(ξ1 + · · ·+ξn) may be considered as an estimation of pa-

rameter a. There naturally arises the following problem: Haw many measures are sufficient
to establish the validity of the following stochastic inequality

P({ω : |Jn(ω)−a| ≤ 0,01})≥ 0,95,

?
Clearly, on the one hand, we have

P({ω : |Jn(ω)−a|> 0,01})≤ 0,05.

On the other hand, we have

P({ω : |Jn(ω)−a|> 0,01})≤ D(Jn)

(0,1)2 =

=
1
n2 ∑n

k=1 Dξk

0,01
=

1
n2 n

0,01
=

100
n

.

From the latter inequality we deduce that the smallest natural number n= nC for which
inequality 100

nC
≤ 0,05, holds, is equal to 2000. Hence, we get

P({ω : |J2000(ω)−a| ≤ 0,1})≥ 0,95.
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Theorem 11.3 (The law of three σ). For arbitrary random variable ξ the following in-
equality

P({ω : |ξ(ω)−Mξ| ≥ 3σ})≤ 1
9
.

Proof. Indeed, using Chebishevs II inequality, we obtain

P({ω : |ξ(ω)−Mξ| ≥ 3σ})≤ Dξ
9σ2 =

1
9
.

Tests

11.1. It is known that Dξ= 0,001. Using Chebishevs inequality the probability of event
{ω : |ξ(ω)−Mξ|< 0,1} is estimated from bellow by the number, which is equal to

a) 0,8, b) 0,9, c) 0,98, d) 0,89.

11.2. We have Dξ = 0,004. It is established that P({ω : |ξ(ω)−Mξ| < ε}) ≥ 0,9;
Then ε is equal to

a) 0,1, b) 0,2, c) 0,3, d) 0,4.

11.3. The distribution law of random variable ξ has the following form

ξ 0,3 0,6
P 0,2 0,8

.

Using Chebishevs inequality the probability of event {ω : |ξ(ω)−Mξ| < ε} is estimated
from the below with the following number

a) 0,86, b) 0,87, c) 0,88, d) 0,89.

11.4. Mean consumption of water in populated area per one day is 50000 liters. Using
Chebishevs inequality estimate from below the probability that in this area water consump-
tion per one concrete day will be 150000 liters.

a) 1
3 , b) 2

3 , c) 1
4 , d) 1

2 .

11.5. The probability that an event A occurred in separate experiment is equal to
0,7. Let denote with νn a fraction the numerator of which is equal to the occurred number
of event A in n independent experiments, and the denominator of which is equal to n.
Minimal natural number n, such that P({ω : |νn(ω)− p|< 0,06} ≥ 0,78 is equal to

a) 327, b) 427, c) 527, d) 627.

11.6. Assume we throw a dice 1200 times. Let ξ denote the number of experiments
when number 1 has been thrown. Use Chebishevs inequality for estimation from below of
the probability of event |ω : ξ(ω)≤ 800}

a) 0,74, b) 0,75, c) 0,76, d) 0,77.
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11.7.Assume that we throw a dice 10000 times. Use Chebishevs inequality to estimate
from below the probability that the relative frequency of event- Number 6 is thrown by us
would be deviated from number 1

6 with probability 0,01
a) 0,84, b) 0,85, c) 0,86, d) 0,87.

11.8. Assume that we shot the gun 600 times and the probability of hitting the target in
a separate experiment is equal to 0,6. Use the Chebishevs inequality for estimation from the
below of the probability that the number of successful shots will be deviated from number
360 by no more than 20.

a) 0,63, b) 0,64, c) 0,65, d) 0,66.

11.9.It is known that the mean weight of a bun is 50 grams. Use the Chebishevs in-
equality for estimation from below of the probability that the weight of randomly chosen
bun will be ≤ 90 gram

a) 1
3 , b) 4

9 , c) 5
9 , d) 2

3 .

11.10.Use the Chebishevs inequality for estimation from below of the probability that
the mean speed of a projectile, accidently shot from a gun is 800 km

sec relative to the hypoth-
esis that the mean speed of the projectile is equal to 500 km

sec .
a) 3

7 , b) 3
8 , c) 1

3 , d) 3
10 .



Chapter 12

Limit theorems

Let (Ω,F ,P) be a probability space and let (Xk)k∈N be an infinite sequence of random
variables.

Definition 12.1. We say that a sequence of random variables (Xk)k∈N converges to number
a ∈ R in the sense of probability if for arbitrary positive number ε > 0 the following
condition

lim
k→∞

P({ω : |Xk(ω)−a|< ε}) = 1.

holds.

This fact is denoted with limk→∞ Xk
p
= a.

We have the following proposition

Theorem 12.1 (Chebishev). Assume that mathematical variances of the random variables
Xk (k ∈ N) are jointly bounded, i.e.,

(∃c)(c ∈ R → (∀n)(n ∈ N → DXn < c)).

Then

lim
n→∞

1
n
(

n

∑
k=1

Xk −
n

∑
k=1

MXk)
p
= 0.

Proof. Following Definition 12.1, it is necessary and sufficient to show the validity of the
following condition

(∀ε)(ε > 0 → lim
n→∞

P({ω : |1
n
(

n

∑
k=1

Xk(ω)−
n

∑
k=1

MXk)−0|< ε}) = 1).

Setting

Yn(ω) =
1
n
(

n

∑
k=1

Xk(ω)−
n

∑
k=1

MXk),

99
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we get

MYn = M
1
n
(

n

∑
k=1

Xk −
n

∑
k=1

MXk) =
1
n

n

∑
k=1

MXk −
1
n

n

∑
k=1

MXk = 0,

DYn = D(
1
n
(

n

∑
k=1

Xk −
n

∑
k=1

MXk)) = D(
1
n

n

∑
k=1

Xk) =
1
n2 D(

n

∑
k=1

Xk)≤
nc
n2 =

c
n
.

Using Chebishev’s II inequality, we get

P({ω : |Yn(ω)−MYn|< ε})≥ 1− DYn

ε2 ≥ 1− c
nε2 .

Hence,
P({ω : |Yn(ω)−MYn|< ε})≥ 1,

e.i.

lim
n→∞

1
n
(

n

∑
k=1

Xk −
n

∑
k=1

MXk)
p
= 0.

This ends the proof of theorem.

As corollary of Theorem 12.1, we get

Theorem 12.2 (Bernoulli). Let (Zk)k∈N be a sequence of independent simple discrete
random variables distributed by Bernoulli law with parameter p. Then

lim
n→∞

(
1
n

n

∑
k=1

Zk)
p
= p.

Proof. The sequence of random variables (Zk)k∈N satisfies the conditions of Theorem 12.1.
Hence,

lim
n→∞

1
n
(

n

∑
k=1

Zk −
n

∑
k=1

MZk)
p
= 0.

But

lim
n→∞

1
n
(

n

∑
k=1

MZk)
p
= p,

lim
n→∞

(
1
n

n

∑
k=1

Zk − p)
p
= 0,

which is equivalent to the following condition

lim
n→∞

1
n

n

∑
k=1

Zk
p
= p.

This ends the proof of Theorem
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Theorem 12.3 If f is a continuous real-valued function defined on [0,1], then the sequence
of random variables (M f (1

n(∑
n
k=1 Zk))n∈N is uniformly converged to function f (p) in

interval [0,1], where (Zk)k∈N is the sequence of independent random variables distributed
by the Bernoulli law with parameter p.

Proof. For arbitrary ε > 0, we have

M| f (1
n
(

n

∑
k=1

Zk))− f (p)| ≤ M(| f (1
n

n

∑
k=1

Zk)− f (p)| · I{ω:| f ( 1
n ∑n

k=1 Zk)− f (p)|≤ε}+

+M(| f (1
n

n

∑
k=1

Zk)− f (p)| · I{ω:| f ( 1
n ∑n

k=1 Zk)− f (p)|>ε} ≤ sup
|x|≤ε

| f (p+ x)− f (p)|+o(n).

This ends the proof of Theorem 12.3.

Remark 12.1 If f is a continuous real-valued function defined on [0,1], then

lim
n→∞

(
n

∑
k=0

f (
k
n
)Ck

nxk(1− x)n−k) = f (x)

for x ∈ [0,1]; Note here that the above-mentioned convergence is uniform on [0,1] . The
later relation is a different entry of the uniform convergence of sequence

(M f (
1
n
(

n

∑
k=1

Zk)))n∈N = (
n

∑
k=0

f (
k
n
)Ck

n pk(1− p)n−k)n∈N

to function f with respect to p on interval [0,1]. From this fact we get the well known
Weierstrass 1theorem about approximation of the continuous real-valued function by poli-
nomials. Note here also that these polinomials have the following form

n

∑
k=0

f (
k
n
)Ck

nxk(1− x)n−k (n ∈ N).

These polinomials are called the Bershtein 2 polinomials.

As corollary of Theorem 12.1 we get the following proposition

Theorem 12.4 (The law of large numbers ). Let (Xk)k∈N be a sequence of identically
distributed random variables. Assume also that MXk = a and DXk = σ2 < ∞; Then an
arithmetic mean of random variables converges in probability sense to number a, i. e. ,

lim
n→∞

1
n

n

∑
k=1

Xk
p
= a.

1Weierstrass; Karl Theodor Wilhelm (31.10.1815 - 19.2.1897 ) - German mathematician; Academician of
Petersburg Academy of Sciences(1864); Professor of Berlin University (1856).

2Bershtein; S (22.2(5,3).1880 - 26.10.1968 ) - Russian mathematician; Academician of the Ukrainian
Academy of Sciences(1925) and academician of the USSR Academy of Sciences (1929).
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Proof. Since the sequence of random variables (Xk)k∈N satisfies the conditions of Theo-
rem 12.1, we get

lim
n→∞

1
n
(

n

∑
k=1

Xk −
n

∑
k=1

MXk)
p
= 0.

Clearly, 1
n ∑n

k=1 MXk =
na
n = a. Note also that

lim
n→∞

1
n
(

n

∑
k=1

Xk −
n

∑
k=1

MXk)
p
= lim

n→∞

1
n

n

∑
k=1

Xk
p
= 0.

The last equality is equivalent to the following equality

lim
n→∞

1
n

n

∑
k=1

Xk
p
= 0.

This ends the proof of theorem.

Remark 12.2. If (Xk)k∈N is a sequence of independent random variables normally dis-
tributed with parameters (0,σ2), then

lim
n→∞

1
n

n

∑
k=1

X2
k

p
= σ2.

Remark 12.3 Assume that the probability of occurring of event A in each experiment is

equal to p. Let νn denote a relative frequency of the event A in n independent experiments.
Using the law of Large numbers it is not difficult to show that for arbitrary positive number
ε the following condition

lim
n→∞

P({ω : |νn(ω)− p|< ε}) = 1,

holds, i.e.,
lim
n→n

νn
p
= p.

Tests

12.1. Let (ξk)k∈N be a sequence of independent random variables uniformly distributed
on (a,b) .

1) Then

lim
n→∞

1
n

n

∑
k=1

ξk
p
= A,

where A is equal to
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a) a+b
2 , b) b−a

2 , c) a+b
3 , d) b−a

3 .
2) Then

lim
n→∞

1
n

n

∑
k=1

ξ2
k

p
= B,

where B is equal to
a) (a+b)2

2 , b) a2+ab+b2

3 , c) (a+b)3

3 , d) (b−a)
12 .

12.2. Let (ξk)k∈N be a sequence of independent Poisson random variables with param-
eter λ = 5 .Then

1) Then

lim
n→∞

1
n

n

∑
k=1

ξk
p
= A,

where A is equal to
a) 3, b) 4, c) 5, d) 6;

2) maSin

lim
n→∞

1
n

n

∑
k=1

ξ2
k

p
= B,

where B is equal to
a) 28, b) 29, c) 30, d) 31.

12.3. Let (ξk)k∈N be a sequence of independent Bernoulli random variables with
parameter p . Then for arbitrary non-zero real number s we have

lim
n→∞

1
n

n

∑
k=1

ξs
k

p
= A,

where A is equal to
a) p, b) pq, c) ps, d) qs.

12.4. Let (ξk)k∈N be a sequence of independent Cantors random variables. Then

lim
n→∞

1
n

n

∑
k=1

ξk
p
= A,

where A is equal to
a) 0,3, b) 0,5, c) 0,6, d) 0,7.

12.5. Let (ξk)k∈N be a sequence of independent geometric random variables with
parameter q = 0,3 . Then

lim
n→∞

1
n

n

∑
k=1

ξk
p
= A,

where A is equal to
a) 29

49 , b) 30
49 , c) 31

49 , d) 32
49 .
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12.6. The sequence of functions (∑n
k=0(

k
n)

3Ck
nxk(1−x)n−k)n∈N is uniformly converged

to function f in the interval [0,1] , where f (x) is equal to
a) x2; b) x3; c) x4; d) x5;

12.7. The sequence of functions (∑n
k=0 sin(( k

n)
2)Ck

nxk(1− x)n−k)n∈N is uniformly con-
verged to function f in the interval [0,1], where f (x) is equal to

a) sin(x2), b) sin(x3), c) sin(x4), d) sin(x4).

12.8. Let (ξn)n∈N be a sequence of independent random variables with identical dis-
tribution functions. The distribution law of ξn is given in the following table

ξn −
√

n+1 0
√

n+1
P 1

n+1 1− 2
n+1

1
n+1

.

Then the application of the Chebishev theorem with respect to the above-mentioned
sequence

12.9. Let (ξk)k∈N be a sequence of independent Poisson random variables with param-
eter k. Then the application of the Chebishev theorem with respect to the above-mentioned
sequence

12.10. Let (ξk)k∈N be a sequence of independent random variables and k be uniformly
distributed on [0;

√
k] for k ∈ N. Then an application of Chebishev theorem with respect

to the above-mentioned sequence



Chapter 13

The Method of Characteristic
Functions and its applications

Definition 13.1. Let (Ω,F,P) be a probability space. A characteristic function of ran-
dom variable ξ : Ω → R is called the mathematical expectation of complex function
eitξ = cos(tξ)+ isin(tξ) and is denoted with Φξ, i. e.,

Φξ(t) = Meitξ (t ∈ R).

Let ξ be a discrete random variable, i. e.,

ξ(ω) = ∑
k∈N

xkIAk(ω) (ω ∈ Ω),

where (Ak)k∈N is a family of pairwise disjoint events covered Ω and (xk)k∈N be a sequence
of real numbers. In this situation, we have

Φξ(t) = Meitξ = ∑
k∈n

eitxk P(Ak) (t ∈ R).

When fξ is the density function of absolutely continuous random variable ξ, then we get

Φξ(t) =
∫ +∞

−∞
eitx fξ(x)dx (t ∈ R).

From the last relation we see that Φξ(t) is Fourier transformation of fξ. From the course
of mathematical analysis it is well known that if we have the Fourier 1 transformation Φξ(t)

1Fourier; Jean Baptiste Joseph ( 1.3. 1768-16. 5. 1830)-French mathematician, the member of Paris
Academy of Sciences (1817), the member of Petersburg Academy of Sciences (1829).
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of function fξ then in some situations we can restore function fξ with function Φξ(t). In
particular,

fξ(x) =
∫ +∞

−∞
e−itxΦξ(t)dt (x ∈ R).

The above mentioned relation is called Fourier inverse transformation .
Let consider some properties of characteristic function.

Theorem 13.1 For arbitrary random variable ξ : Ω → R we have

Φξ(0) = 1.

Proof. Since Φξ(t) = Meitξ (t ∈ R), we have

Φξ(0) = M 1 = 1.

Theorem 13.2. For every random variable ξ the following condition

(∀t)(t ∈ R → |Φξ(t)| ≤ 1).

holds. Note that for every random variable η the following condition

|Mη| ≤ M|η|.

holds. Hence,
|Φξ(t)|= |Meitξ| ≤ M|eitξ|= M1 = 1.

Theorem 13.3. For arbitrary random variable ξ we have

Φξ(−t) = Φξ(t).

Proof.

Φξ(−t) = M(e−itξ) = M(cos(−tξ)+ isin(−tξ)) = M(cos(−tξ))+ iM(sin(−tξ)) =

= M(cos(tξ))− iM(sin(tξ)) = M(cos(tξ))+ iM(sin(tξ)) = Meitξ = Φξ(t).
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The following two facts are presented without proofs.

Theorem 13.4 Characteristic function Φξ(t) of random variable ξ is uniformly continuous
on the real axis.

Theorem 13.5 (Uniqueness Theorem). The distribution function of the random variable is
uniquely defined with its characteristic function.

Theorem 13.6 If random variables ξ and η are linearly related with ξ(ω)= aη(ω)+b (a∈
R, b ∈ R,ω ∈ Ω), then

Φξ(t) = eitbΦη(at).

Proof. Indeed,

Φξ(t) = Φaη+b(t) = Mei(aη+b)t = MeibtMeiaηt = eitbΦη(at).

Theorem 13.7 The characteristic function of the sum of two independent random variables
is equal to the product of characteristic functions of the corresponding random variables.

Proof. Let ξ and η be independent random variables. Then complex random variables eitξ

and eitη are independent, too. Now using the property of mathematical expectation we get

Φξ+η(t) = Meit(ξ+η) = MeitξMeitη = Φξ(t) ·Φη(t).

Theorem 13.7 admits the following generalization

Theorem 13.8 If (ξk)1≤k≤n is the finite family of independent random variables, then

Φ∑n
k=1 ξk(t) =

n

∏
k=1

Φξk(t) (t ∈ R).

Let ξ be a random variable and let (ξk)k∈N be a sequence of random variables.

Definition 13.2 The sequence of random variables (ξk)k∈N is called weakly converged to
random variable ξ if sequence (Fξn)n∈N is convergent to function Fξ at its continuity points.

We present one fundamental fact from the probability theory without proof.
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Theorem 13.9 The sequence of random variables (ξk)k∈N weakly converges to the random
variable ξ if and only if the sequence of characteristic functions (Φξn)n∈N converges to the
characteristic function Φξ.

Let consider some examples.

Example 13.1 Let ξ be a Binomial random variable with parameters (n, p), i.e.,

P({ω : ξ(ω) = k}) =Ck
n pk(1− p)n−k (0 ≤ k ≤ n).

Then

Φξ(t) = Meitξ =
n

∑
k=0

eitk ·Ck
n pk(1− p)n−k =

=
n

∑
k=0

Ck
n(e

it p)k(1− p)n−k = [peit +(1− p)]n = (peit +q)n, q = 1− p.

Example 13.2 Let ξ be a Poisson random variable with parameter λ, i. e.,

P({ω : ξ(ω) = k}) = λk

k!
e−λ (k = 0,1, · · ·),

Then

Φξ(t) = Meitξ =
∞

∑
k=0

eitk

k!
e− λ =

∞

∑
k=0

(eitλ)k

k!
e−λ =

= e−λ
∞

∑
k=0

(eitλ)k

k!
= eλeit−λ = eλ(eit−1).

Example 13.3 Let ξ be a random variable uniformly distributed in the interval (a;b) , i.
e.,

fξ(x) =
{ 1

b−a , if x ∈ [a,b],
0, if x /∈ [a,b].

Then

Φξ(t) = Meitξ =
∫ +∞

−∞
eitx fξ(x)dx =

∫ b

a

eitx

b−a
dx =

1
(b−a)it

eitx
∣∣b
a =

=
1

(b−a)it
(eitb − eita).

Example 13.4 Let ξ be a normally distributed random variable with parameters (a,σ2), i.
e.,

fξ(x) =
1√
2πσ

e−
(x−m)2

2σ2 (x ∈ R).
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Then
Φξ(t) = Meitξ =

∫ +∞

−∞
eitx fξ(x)dx =

=
1√
2πσ

∫ +∞

−∞
eitx− (x−a)2

2σ2 dx.

Setting z = x−a
σ − itσ, we get

x−a
σ

= z+ itσ, x = a+σz+ itσ2, dx = σdz.

With simple transformation we get

Φξ(t) =
1√
2πσ

∫ +∞−itσ

−∞−itσ
eit(a+zσ+itσ2)− (z+itσ)2

2 σdz =

= eiat− σ2t2
2

1√
2π

∫ +∞−itσ

−∞−itσ
e−

z2
2 dz (t ∈ R).

Using the well known fact from mathematical analysis asserted that

(∀b)(b ∈ R →
∫ +∞−itσ

−∞−itσ
e−

z2
2 dz =

√
2π),

we get

Φξ(t) = eiat− σ2t2
2 (t ∈ R).

Remark 13.1 Characteristic function Φξ of normally distributed random variable ξ with
parameter (0,1) has the following form

Φξ(t) = e−
t2
2 (t ∈ R).

Example 13.5 Let ξ be exponential random variable with parameter λ , i.e.,

fξ(x) =
{

λe−λx, if x ≥ 0,
0, if x < 0.

Then
Φξ(t) = Meitξ =

∫ +∞

−∞
eitx fξ(x)dx =

∫ +∞

0
eitx−λxdx =

=λ
∫ +∞

0 (eite−λ)xdx = λ
∫ +∞

0 (eit−λ)xdx= λ (eit−λ)x

(it−λ)

∣∣+∞
0 = λ

λ−it .

Example 13.6 Let ξ = c be a constant random variable, i.e.,

P({ω : ξ(ω) = c}) = 1,
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Then
Φξ(t) = Meitξ = Meitc = eitc.

Let consider one application of the method of characteristic functions

Theorem 13.10 (Lindeberg 2 -Levy 3). If (ξk)k∈N be a sequence of independent identically
distributed random variables, then the sequence of random variables

(∑n
k=1 ξk −M(∑n

k=1 ξk)√
D∑n

k=1 ξk

)
n∈N

is weakly converged to the standard normally distributed random variable, i.e.,

(∀x)(x ∈ R → lim
n→∞

P
(
{ω :

∑n
k=1 ξk −M(∑n

k=1 ξk)√
D∑n

k=1 ξk
< x}

)
=

=
1√
2π

∫ x

−∞
e−

t2
2 dt

)
.

Proof. Here we present the proof of this theorem in the case of absolutely continuous
random variables. Assume that m = Mξ1, σ =

√
Dξ1. We have

lim
n→∞

Φ ∑n
k=1 ξk−mn

√
nσ

(t) = lim
n→∞

Φ
∑n

k=1(
ξk−m√

σ ) 1√
n
(t) =

lim
n→∞

Φ
∑n

k=1(
ξk−m√

σ )
(

t√
n
) = lim

n→∞

n

∏
i=1

Φ ξi−m
σ
(

t√
n
) = lim

n→∞
e

ln∏n
i=1 Φ ξi−m

σ
( t√

n )
=

= lim
n→∞

e
∑n

i=1 lnΦ ξi−m
σ

( t√
n )
.

If we denote with f (t) the distribution function of random variable ξi−m
σ , then we get

Φ(t) := Φ ξi−m
σ
(t) =

∫ +∞

−∞
eitx f (x)dx,

Φ
′
(t) =

∫ +∞

−∞
ixeitx f (x)dx,

Φ
′′
(t) =

∫ +∞

−∞
i2x2eitx f (x)dx =−

∫ +∞

−∞
x2eitx f (x)dx.

2Lindeberg; J:W:- Finnish mathematician. He was the first who proved Theorem 10 which in literature is
known as Central Limiting Theorem.

3Levy; Paul Pierre (15.9.1889 - 15.12.1971 )-French mathematician, the member of Paris Academy of
Sciences (1964). He was the first who applied the method of characteristic functions to prove Central Limiting
Theorem.
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Note that
Φ(0) = 1,

Φ
′
(0) = iM(

ξi −m
σ

) = 0,

Φ
′′
(0) =−

∫ +∞

−∞
x2 f (x)dx =−1.

The Maclaurin 4 formula with the first three members has the following form

Φ(t) = Φ(0)+
Φ′

(0)
1!

t +
Φ”(0)

2!
t2 +a(t)t3,

where limt→0 a(t) = 0. Hence, we get

Φ(
t√
n
) = 1+0 · t√

n
− t2

2n
+a(

t√
n
) · t3

n
√

n
.

From the course of mathematical analysis it is well known that ln(1+o(n)) ≈ o(n) when
o(n) is an infinitely small sequence (i.e., limn→∞ o(n) = 0). Finally we get

lim
n→∞

Φ ∑n
k=1 ξk−mn

√
nσ

(t) = lim
n→∞

en ln(1+0· t√
n−

t2
2n+a( t√

n )·
t3

n
√

n ) =

= lim
n→∞

en(− t2
2n+a( t√

n )·
t3

n
√

n ) = elimn→∞(− t2
2 +a( t√

n )·
t3√

n ) = e−
t2
2 ,

which ends the proof of theorem.

Example 13.7 Assume that the following conditions are fulfilled:
1) Let ξk be the moons diameter estimation obtained with k-th measure (k ∈ N);
2) a is the moons diameter;
3) the results of measures ξk (k ∈ N) is a sequence of normally distributed independent

random variables with parameters (a,1).
Using the Chebishev inequality (cf. Chapter 11, Example 11.1) we have proved that

nC = 2000 is such smallest natural number for which the following stochastic inequality

P({ω : |1
n

n

∑
k=1

ξk(ω)−a| ≤ 0,1})≥ 0,95.

holds. Note here that with the help of Chebishev inequality it is not possible to choose
natural number smaller than nC = 2000 which will satisfy the above mentioned inequality.
Since ∑n

k=1 ξk−na√
n is the normally distributed random variable with parameter (0,1), we can

calculate the smallest natural number nC, for which the same inequality holds.

4Maclaurin; Colin (1698 - 14.6.1746 ) - Scottish mathematician.
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Indeed, we get

P({ω : |1
n

n

∑
k=1

ξk(ω)−a| ≤ 0,1}= P({ω : |∑
n
k=1 ξk(ω)−na

n
| ≤ 0,1}=

= P({ω : |∑
n
k=1 ξk(ω)−na√

n
| ≤ 0,1

√
n}= 1−2Φ(−0,1

√
n).

Clearly, we must to choose a such smallest natural number nL which will be a solution of
the following inequality

1−2Φ(−0,1
√

n)≥ 0,95.

We have
Φ(−0,1

√
n)≤ 1−0,95

2
⇔ Φ(−0,1

√
n)≤ 0,025 ⇔

−0,1
√

n ≤ Φ−1(0,025)⇔
√

n ≥ 100(Φ−1(0,025))2 ⇔

n ≥ 100(1,96)2 ⇔ n ≥ 383,16 ⇔ n ≥ 384.

Finally we deduce that nL = 385, which is a such smallest natural number which is solution
of the following inequality

P({ω : |1
n

n

∑
k=1

ξk(ω)−a| ≤ 0,1} ≥ 0,95.

It is clear that natural number nL = 385 is smaller than natural number nC = 2000 obtained
with the help of the Chebishev inequality.

Remark 13.2. If the sequence of random variables (ξk)k∈N is weakly convergent to random
variable ξ, then for sufficiently large natural number n the distribution function Fξn of ξn

can be assumed to be equal to distribution function Fξ of random variable ξ.

Tests

13.1. Let define sequence of random variables (ξn)n∈N with

(∀ω)(ω ∈ Ω → ξn(ω) =C− 1
n
).

Then the sequence of random variables (ξn)n∈N is weakly convergent to random variable
ξ, which is equal (with probability 1) to

a) c−1, b) c, c) c2, d) c+1.

13.2. Let ξn be the Poisson random variable with parameter λ+o(n) for n ∈ N, where
λ > 0, and let (o(n))n∈N be an infinitely small sequence. Then the sequence of random
variables (ξn)n∈N is weakly convergent to the Poisson random variable with parameter µ,
where µ is equal to
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a) λ, b) λ2, c) λ(1+λ), d) λ2(1+λ)2.

13.3. Let ξn be a random variable uniformly distributed in interval (an,bn) for n ∈ N.
Assume also that limn→∞ an = a and limn→∞ bn = b. Then the sequence of random variables
(ξn)n∈N is weakly convergent to the random variable uniformly distributed on interval (c,d),
where (c,d) coincides with

a) (a,b), b) (b−a
2 , a+b

2 ), c) (a, a+b
2 ), d) (a+b

2 ,b).

13.4. Let (ξn)n∈N be an independent sequence of random variables and let ξk be
a normally distributed random variable with parameters ( 1

2k ; 1
22k ) for k ∈ N. Then the

sequence of random variables (∑n
k=1 ξk)n∈N is weakly convergent to the normally distributed

random variable with parameters (m,σ2), where (m,σ2) is equal to
a) (1,3), b) (1,4), c) (1,5), d) (1,6).

13.5. (The Poisson Theorem ). Let (ξn)n∈N be the sequence of independent Binomial
random variables with parameters (n, pn). Assume that limn→∞ n · pn = λ > 0. Then the
sequence of random variables (ξn)n∈N is weakly convergent to the Poisson random variable
with parameter µ, where µ is equal to

a) λ+1, b) λ, c) λ−1), d) λ2.

13.6. Let (ξn)n∈N be the independent sequence of normally distributed random vari-
ables with parameter (a,σ2). Then the sequence of random variables ( ξ1+···+ξn

n )n∈N is
weakly convergent to constant random variable m, where m is equal to

a) a, b) a2, c) a3, d) a4.

13.7. Let ξk be a normally distributed random variable with parameter (mk,σ2
k) for

1 ≤ k ≤ n. Then sum ∑n
k=1 ξk is a normally distributed random variable with parameter

(m,σ2), where (m,σ2) is equal to
a) (∑n

k=1 mk,∑n
k=1 σk), b) (∑n

k=1 mk,∑n
k=1 σ2

k),
c) (∑n

k=1 mk,∑n
k=1 σ3

k), d) (∑n
k=1 mk,∑n

k=1 σ4
k).

13.8. If ξ is a normally distributed random variable with parameter (m,σ2), then ran-
dom variable aξ+ bis distributed normally with parameter (c,d2), where (c,d2) is equal
to

a) (b+am,a2σ2), b) (b+am,aσ2),
c) (b+am,a2σ), d) (b+m,aσ2).

13.9. Let (ξk)1≤k≤n be an independent sequence of random variables and let ξk be a
Poisson random variable with parameter λk. Then sequence ∑n

k=1 ξk is a Poisson random
variable with parameter µ, where µ is equal to

a) ∑n
k=1 λ2

k , b) ∑n
k=1 λk,

c) ∑n
k=1(1−λk), d) ∑n

k=1(1+λk).

13.10. Let (ξk)1≤k≤n be an independent sequence of random variables and let ξk be
a Binomial random variable with parameters (nk, p). Then ∑n

k=1 ξk is a binomial random
variable with parameters (m,x), where (m,x) is equal to

a) (∑n
k=1 k, p), b) (∑n

k=1 k, p2),
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c) (∑n
k=1

2
k , p2), d) (∑n

k=1 k, p3).

13.11. Let ξk be a number of demands of the k-th goods during one day which is
a Poisson random variable with parameter λk(1 ≤ k ≤ n). Then the probability that the
common number of demands of all goods during one day will be equal to 8 relative to
hypothesis m = 10, λ1 = · · ·= λ5 = 0,3, λ6 = · · ·= λ9 = 0,8, λ10 = 1,3, is equal to

a) 0,345103, b) 0,457778, c) 0,567788, d) 0,103258.

13.12. The mean load transported with a lórry on each trip is equal to m = 20. The
mean absolute deviation of the above mentioned load is equal to σ = 1. Then

1) the probability that the weight of the load transmitted during 100 trips will be in
interval [1950;2000], is equal to

a) 0,5, b) 0,55, c) 0,555, d) 0,5555;
2) the value which is grater with probability 0,95 than the weight of the load trans-

mitted during 100 trips is equal to
a) 20164, b) 20264, c) 20364, d) 20464.

13.13. A mean weight of an apple is m = 0,2 kg. A mean of absolute deviation of the
weight of accidentally chosen apple is σ = 0,02 kg. Then

1) the probability that the weight of the accidently chosen 49 apples will be in interval
[9,5;10], is equal to

a) 0,44; b) 0,88; c) 0,178; d) 0,356;
2) the value which will be smaller then the weight of the accidentally chosen 100 apples

with probability 0,95, is equal to
a) 16,672, b) 17,672, c) 18,672, d) 19,672.

13.14. The probability that túrner will make a standard detail is equal to 0,64. Then the
probability that

1) 70 details, accidentally chosen from the complect of 100 details will be standard, is
equal to

a) 0,6241, b) 0,7241, c) 0,8241, d) 0,9241;
2)the number of standard details in the accidentally chosen 100 details will be in interval

[50,65], is equal to
a) 0,1108, b) 0,1308, c) 0,1508, d) 0,1708.

13.15. The factory sent 15000 standard details to the stórehouse. The probability that
the detail will dámaged during transportation, is equal to 0,0002. Then the probability that

1)3 dámaged details will be brought to bring at stórehose, is equal to
a) 0,094042, b) 0,114042, c) 0,134042, d) 0,154042;

2) the number of dámaged details will be in interval [2,4], is equal to
a) 0,414114, b) 0,515115, c) 0,616116, d) 0,717117.

13.16. Suppose that 19% of all sales are for amounts greater that 1.000 dollars. In a
random sample of 30 invoices, what is the probability that more than six of the invoices are
for over 1.000 dollars?

a) 0,4443 , b) 0,9562 , c) 0,5678, d) 0,5678 ;
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Chapter 14

Markov Chains

Let (Ω,F ,P) be a probability space. Assume that we have a physical system, which
after each step changes its phase position. Assume that the number of possible positions
ε1,ε2, · · · . is finite or countable. Let ξn(ω) be a position of physical system after n steps
(ω ∈ Ω). Clearly, the chain of logical transitions

ξ0(ω)→ ξ1(ω)→ ··· (ω ∈ Ω)

depends on the chance factor. Assume that the following regularity condition is preserved:
if after n steps the system is in position εi , then, independently of its early positions it will
pass to position ε j with probability Pi j, i.e.,

Pi j = P({ω : ξn+1(ω) = ε j |ξn(ω) = εi}), i, j = 1,2, · · · .

The above described model is called Markov 1 homogeneous chain. Number Pi j is
called the transition probability. Besides there is also given also the distributions of initial
positions, i.e.,

P(0)
i = P({ω : ξ0(ω) = εi}) i = 1,2, · · ·

Here naturally arises the following problem:
what is the probability that the physic system will be in the position εi after n steps ?
Let denote this probability by Pj(n), i. e.,

Pj(n) = P({ω : ξn(ω) = ε j}).

Note that after n−1 steps the physical system will be in one of the possible positions
εk (k = 1,2, · · ·). The probability that the physical system will be in position εk is equal to
Pk(n−1). The probability that the physical system will occur in position ε j after n steps if

1Markov, A (2(14).1856-20.7.1922) - Russian mathematician, the member of Petersburg Academy of Sci-
ences (1890).

117



118 Gogi Pantsulaia, Zurab Kvatadze and Givi Giorgadze

it is known that after n−1 steps it was in position εk is equal to transition probability Pk j.
Using total probability formula we get

P({ω : ξn(ω) = ε j}) =

∑
k∈N

P({ω : ξn(ω) = ε j}|{ω : ξn−1(ω) = εk}) ·P({ω : ξn−1(ω) = εk}).

The formula gives the following recurrent formula for calculation of the probability Pj(n) :

Pj(0) = P(0)
j , Pj(n) = ∑

k∈N
Pk(n−1) ·Pk j ( j,n = 1,2, · · ·).

In this case when the physical system at the initial moment is in position εi the initial
distribution has the following form

P(0)
i = 1, P(0)

k = 0, k ̸= i,

and probability Pj(n) coincides with Pi j(n) , which is equal to transition probability from
position εi to position ε j after n steps, i. e.,

Pi j(n) = P({ω : ξn(ω) = ε j|{ω : ξ0(ω) = εi}} i, j = 1,2, · · · .

In the case of the following initial distribution P(0)
i = 1, P(0)

k = 0 (k ̸= i) we get

Pi j =

{
1, if i = j
0, if i ̸= j

,

Setting
P (n) = (Pi j(n))i, j∈N ,

we get
P (0) = I, P (1) = P , P (2) = P (1) ·P = P 2, · · · ,

where I is an infinite-dimensional unite matrix and P is the matrix of transition probabil-
ities. It is evident that

P (n) = P n (n = 1,2, · · ·).

Let consider some examples.

Example 14.1 (Random roaming ). Let consider random roaming connected with infinite
number of Bernoulli independent experiments when the particle is roaming in the integer-
valued points of the real axis such that if it is placed in the i-th position, then the transition
probabilities to positions i+1 or i−1 are equal to p or q = 1− p, respectively (0 < p <
1). If with ξn we denote the position of the particle after n steps, then sequence

ξ0(ω)→ ξ1(ω)→ ··· (ω ∈ Ω)
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will be the Markov chain, whose transition probabilities have the following form

Pi j =

{
p , if j = i+1
q , if j = i−1

.

Remark 14.1 In our case the physical system (i.e., the particle) has an infinite number of
phase positions.

Example 14.2 Let consider a physical system which has three different possible positions
ε1,ε2,ε3. Assume that after one step matrix P of transition probabilities has the following
form

P =

 1
3

1
3

1
3

0 1
2

1
2

0 0 1.

 .

In the present example position ε3 has the property that if physical system will be
placed in it, then it remains in this position with probability 1. Such position is called
absorbable. If the particle is placed in some position and it remains in it with probability 0
then such position is called reflectable. If position εi is absorbable then Pii = 1 and if the
position εi is reflectable, then Pii = 0.

If we know that before observation the physical system is placed in position εi (1 ≤ i ≤
n), then using matrix P (m) we can find transition probability Pi j(m) after m steps. In this
case, when an initial position of physical system is not known, but we know probabilities
P(0)

i that system is placed in position i, then using total probability formula we can calculate
the probability that after m steps the physical system will be placed in position ε j by the
following formula

Pj(m) =
n

∑
k=1

P(0)
k ·Pk j(m).

The row-vector
P(0) = (P(0)

1 ,P(0)
2 , · · · ,P(0)

n )

is called the vector of initial distribution of the Markov chain and the row-vector

P (m) = (P(m)
1 ,P(m)

2 , · · · ,P(m)
n )

is called the distribution vector after m steps for Markov chain. In our notations we get

P (m) = P (0) ·P (m) = P (0) ·P m.

We present Markov theorem about limit probabilities without proof.

Theorem 14.1 Let (εi)1≤i≤n be the possible positions of a physical system. If the crossing
probabilities P(m)

i j of the Markov chain are positive for arbitrary natural number m, then
there exists a finite family of real numbers (qi)1≤i≤n such that

(∀i)(1 ≤ i ≤ n → lim
m→∞

Pi j(m) = q j) (1 ≤ j ≤ n).
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The number q j (1 ≤ j ≤ n) can be considered as the probability of the occurrence in
the j-th position of physical system for sufficiently large natural number m.

Tests

14.1. The matrix of the transition probabilities of the Markov chain is defined by

P =

 0 1 0
0,5 0,5 0

0 0 1


and the vector of initial probabilities coincides with (0,2; 0,5; 0,3). Then the distribution
vector after two steps will be equal to

a) (0,125;0,475;0,4), b) (0,225;0,475;0,3),
c) (0,025;0,575;0,4), d) (0,125;0,375;0,5).

14.2. The matrix of transition probabilities of the Markov chain is defined by

P =

 0,3 0,1 0,6
0 0,4 0,6

0,4 0,3 0,3

 .

Then matrix P (2) of transition probabilities of the Markov chain after 2-steps has the
following form

a)  0,25 0,15 0,6
0 0,3 0,7

0,4 0,3 0,3

 ,

b)  0,33 0,21 0,46
0,4 0,3 0,3

0,24 0,13 0,33

 .

14.3. The matrix of crossing probabilities of the Markov chain is defined by

P =

 0,1 0,5 0,4
0 0 1

0,5 0,3 0,2

 .

Then transition probability from position ε2 to position ε3 after 3 steps P23(3) will be
equal to

a) 0,125, b) 0,225, c) 0,54, d) 0,375.

14.4. The matrix of transition probabilities of the Markov chain is defined by

P =

(
0,3 0,7

0,1 0,9

)
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and the vector of initial probabilities coincides with (0,2; 0,8). It is known that transition
probability from any initial position εi to position εi after 2 steps is equal to 0,128. Then i
is equal to

a) 1, b) 2.





Chapter 15

The Process of Brownian Motion

Let consider a little particle which is placed in homogeneous liquid. Since the particle un-
dergoes chaotic collisions with molecules of liquid, it is in continuous chaotic (unordered)
motion. A discrete analogue of this process is the following random roaming of the parti-
cle on the real axis: the particle changes its positions in such moments of times which are
múltiple of ∆t(∆t > 0). If the particle is placed in point x then the transition probabilities
to positions x+∆x and x−∆x are the same and are equal to 0,5 (Here we consider one-
dimensional random roaming). We assume that x is the same for arbitrary position x. In the
limit, when ∆t → 0, ∆x → 0, with spatial law, a continuous random roaming is obtained
which describes a model of the Brownian1 physic process.

Let denote with ξt(ω) the position of the particle in moment t. Assume that the particle
is placed in position x = 0 in initial moment t = 0. In this case of discrete roaming during
time t this particle makes n = t

∆t steps. If we denote with Sn(ω) the number of steps
with ∆x in positive direction, then the common shift in positive direction will be to equal
to Sn(ω) ·∆x, and the common shift in negative direction will be equal to (n−Sn(ω)) ·∆x.
Hence, common shift ξt(ω) after time t = n∆t is connected with Sn(ω) by the following
equality

ξt(ω) = [Sn(ω)∆x− (n−Sn(ω))∆x] = (2Sn(ω)−n)∆x.

If we assume that ξ0(ω) = 0, then

ξt(ω) = (ξs(ω)−ξ0(ω))+(ξt(ω)−ξs(ω))

for every s ∈ [0, t]. Clearly, in our model random variables ξs − ξ0 and ξt − ξs are inde-
pendent. Since distribution functions of increases ξt −ξs and ξt−s −ξ0 are equal

we get that σ2(t) = Dξt satisfies the following condition

σ2(t) = σ2(s)+σ2(t − s) (0 ≤ s ≤ t).

1Brown; Robert (21.12.1773, - 10.6.1858) - English botanist who was the first to discover so called Brown-
ian motion, which in the probability theory is also known as Wiener process.
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It follows that σ2(t) linearly depends on t. It means that there exists positive real
number σ2, such that

Dξt = σ2 · t.
Number σ2 is called a diffusion coefficient of the Brownian process. On the other hand,
it is easy to show that variance of shift after time t ( equivalently, after n = t

∆t steps )
is Dξt = (∆x)2 · t

∆t . Finally, we get following relation between values ∆x and ∆t :

(∆x)2

∆t
= σ2.

Since particle transitions are independent, they can be considered as the Bernoulli ex-
periment with success probability p = 1

2 . Then the number of steps in positive direction
Sn(ω) will be equal to the number of successes in n independent Bernoulli experiments.
In this case the position of particle ξt(ω) at moment t will be connected with normalized
random variable S∗n(ω) = 1√

n(2Sn(ω)−n) with the following equality

ξt(ω) = S∗n(ω)
√

n∆x = S∗n(ω)
√

t
∆x√
∆t

= S∗n(ω)σ
√

t.

Using Theorem 13.10 , we deduce that the distribution function of random variable ξt(ω) in
the case of one-dimensional Brownian process has the following form

P({ω : x1 ≤
ξt(ω)
σ
√

t
≤ x2}) = lim

∆t→0
P({ω : x1 ≤ S∗n(ω)≤ x2}) =

lim
n→∞

P({ω : x1 ≤
Sn(ω)−np

√
npq

≤ x2}) =
1√
2π

∫ x2

x1

e−
x2
2 dx,

where p = q = 1
2 .

One can easily demonstrate the validity of the following formula

P({ω : y1 ≤ ξt(ω)≤ y2}) = (Φ(
y2

σ
√

t
)−Φ(

y1

σ
√

t
)) (t > 0,y1 < y2)

Now we consider a problem of prognosis of the Brownian motion. Let (ξt(ω))t > 0(ω ∈ Ω)
be a Brownian process with unknown diffusion coefficient σ2. Let (ξtk(ω))1≤k≤n+1 be
the result of observations on this process at moments (tk)1≤k≤n+1. Here we assume that
t1 = 0,ξt1(ω) = 0 and tk < tk+1. We set

Xk(ω) =
ξtk+1(ω)−ξtk(ω)√

tk+1 − tk
(1 ≤ k ≤ n).

It is clear that (Xk(ω))1≤k≤n is a sequence of independent random variables normally dis-
tributed with parameters (0;σ2), where σ2 is an unknown parameter. From the course of
mathematical statistics it is known that statistics σ2

n defined with

σ2
n =

1
n−1

n

∑
i=1

(Xi(ω)−
1
n

n

∑
j=1

X j(ω)),
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is a good estimation of unknown parameter σ2.
The prognosis of the stochastic behavior of the Brownian motion in moment t(t > tn+1)

can be given with the following formula

P({ω : y1 ≤ ξt(ω)≤ y2}) = (Φ(
y2

σn
√

t
)−Φ(

y1

σn
√

t
)) (t > 0,y1 < y2).

Remark 15.1. Using statistical functions NORMDIST and VAR (cf. p.134) the prognosis
of the stochastic behavior of the Brownian motion in the moment t(t > tn+1) can be given
with the following formula

P({ω : y1 ≤ ξt(ω)≤ y2}) = NORMDIST(
y2√

t × VAR(x1 : xn)
;0;1;1)−

NORMDIST(
y1√

t × VAR(x1 : xn)
;0;1;1),

where xk = Xk(ω) f or1 ≤ k ≤ n.

Remark 15.2. It is reasonable to note that the hypothesis about the form of the distribution
function of one-dimensional Brownian motion belongs to eminent physician Albert Ein-
stein. His conjecture was strongly proved by American mathematician Norbert Wiener to
whom belongs the mathematical construction of the Brownian motion. Hence, in literature
the Brownian process is mentioned also as Wiener process.

Tests

15.1. The change of the commodity price is the Brownian process with diffusion coef-
ficient σ2 = 1. At t = 0 the price of the commodity was equal to 9 lari. The probability
that the price of the commodity will not increase at moment t = 9, is equal to

a) 0,4, b) 0,5, c) 0,6, d) 0,3.

15.2. The change of the commodity price is the Brownian process with diffusion coef-
ficient σ2 = 1. At t = 0 the price of the commodity was equal to 200 lari. The probability
that the price of the commodity at the moment t = 9 will be

1) less than 190 lari, is equal to
a) 0,3064, b) 0,3164, c) 0,3264, d) 0,3364;

2) more than 210 lari, is equal to
a) 0,2864, b) 0,3264, c) 0,3464, d) 0,3664;

3) placed in interval [185 , 205 ], is equal to
a) 0,3027, b) 0,3227, c) 0,3527, d) 0,3727.

15.3. The change of a bonds price is the Brownian process with diffusion coefficient
σ2 = 1. The firm bought the bond for 3000 lari at the moment t = 0. The probability that

1) the pr0́fit obtained by buying the bond at moment t = 250000 will be more than 300
lari, is equal to
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a) 0, b) 0,1, c) 0,2, d) 0,3;
2) the damage obtained by buying of bond at the moment t = 900 will be grater than 15

lari, is equal to
a) 0, b) 1, c) 0,3, d) 0,6.

15.4. The change of the goods price in the shop is the Brownian process with diffusion
coefficient σ2 = 1. At t = 0 the price of the goods was equal to 50 lari. The buyer is
interested to buy the goods for no more than 55 lari. The shop stops selling the goods if its
price decreases below 41 lari. The probability that the buyer bought the goods in moment
t = 1 2

3 , is equal to
a) 0,2287, b) 0,3387, c) 0,4487, d) 0,5587.



Chapter 16

Mathematical Statistics

16.1 Introduction

Statistics 1 is the science of the collection, organization, and interpretation of data(see
[1],[2]). It deals with all aspects of this, including the planning of data collection in terms
of the design of surveys and experiments(see [1]).

A statistician is someone who is particularly well versed in the ways of thinking neces-
sary for the successful application of statistical analysis. Such people have often gained this
experience through working in any of a wide number of fields. There is also a discipline
called mathematical statistics, which is concerned with the theoretical basis of the subject.

The word statistics, when referring to the scientific discipline, is singular, as in ”Statis-
tics is an art”(see [3]) This should not be confused with the word statistic, referring to a
quantity (such as mean or median) calculated from a set of data(see [4]), whose plural is
statistics, e.g. ”This statistic seems wrong.” or ”These statistics are misleading.”

16.2 Scope

Statistics is considered by some to be a mathematical science pertaining to the collection,
analysis, interpretation or explanation, and presentation of data,[5] while others consider it
a branch of mathematics[6] concerned with collecting and interpreting data. Because of its
empirical roots and its focus on applications, statistics is usually considered to be a distinct
mathematical science rather than a branch of mathematics.[7][8]

Statisticians improve the quality of data with the design of experiments and survey sam-
pling. Statistics also provides tools for prediction and forecasting using data and statistical
models. Statistics is applicable to a wide variety of academic disciplines, including natu-
ral and social sciences, government, and business. Statistical consultants are available to
provide help for organisations and companies without direct access to expertise relevant to
their particular problems.

1This material is referred from cite http://en.wikipedia.org/wiki/Statistics
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Statistical methods can be used to summarize or describe a collection of data; this is
called descriptive statistics. This is useful in research, when communicating the results of
experiments. In addition, patterns in the data may be modeled in a way that accounts for
randomness and uncertainty in the observations, and are then used to draw inferences about
the process or population being studied; this is called inferential statistics. Inference is a
vital element of scientific advance, since it provides a prediction (based in data) for where
a theory logically leads. To further prove the guiding theory, these predictions are tested
as well, as part of the scientific method. If the inference holds true, then the descriptive
statistics of the new data increase the soundness of that hypothesis. Descriptive statistics
and inferential statistics (a.k.a., predictive statistics) together comprise applied statistics.[9]

Statistics is closely related to probability theory, with which it is often grouped; the
difference, roughly, is that in probability theory one starts from given parameters of a total
population, to deduce probabilities pertaining to samples, while statistical inference, mov-
ing in the opposite direction, is inductive inference from samples to the parameters of a
larger or total population.

16.3 History

Some scholars pinpoint the origin of statistics to 1663, with the publication of Natural and
Political Observations upon the Bills of Mortality by John Graunt.[10] Early applications of
statistical thinking revolved around the needs of states to base policy on demographic and
economic data, hence its stat- etymology. The scope of the discipline of statistics broadened
in the early 19th century to include the collection and analysis of data in general. Today,
statistics is widely employed in government, business, and the natural and social sciences.

Its mathematical foundations were laid in the 17th century with the development of
probability theory by Blaise Pascal and Pierre de Fermat. Probability theory arose from
the study of games of chance. The method of least squares was first described by Carl
Friedrich Gauss around 1794. The use of modern computers has expedited large-scale
statistical computation, and has also made possible new methods that are impractical to
perform manually.

16.4 Overview

In applying statistics to a scientific, industrial, or societal problem, it is necessary to begin
with a population or process to be studied. Populations can be diverse topics such as ”all
persons living in a country” or ”every atom composing a crystal”. A population can also be
composed of observations of a process at various times, with the data from each observa-
tion serving as a different member of the overall group. Data collected about this kind of
”population” constitutes what is called a time series.

For practical reasons, a chosen subset of the population called a sample is studied as
opposed to compiling data about the entire group (an operation called census). Once a
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sample that is representative of the population is determined, data is collected for the sample
members in an observational or experimental setting. This data can then be subjected to
statistical analysis, serving two related purposes: description and inference.

* Descriptive statistics summarize the population data by describing what was observed
in the sample numerically or graphically. Numerical descriptors include mean and standard
deviation for continuous data types (like heights or weights), while frequency and percent-
age are more useful in terms of describing categorical data (like race).

* Inferential statistics uses patterns in the sample data to draw inferences about the pop-
ulation represented, accounting for randomness. These inferences may take the form of:
answering yes/no questions about the data (hypothesis testing), estimating numerical char-
acteristics of the data (estimation), describing associations within the data (correlation) and
modeling relationships within the data (for example, using regression analysis). Inference
can extend to forecasting, prediction and estimation of unobserved values either in or asso-
ciated with the population being studied; it can include extrapolation and interpolation of
time series or spatial data, and can also include data mining.

The concept of correlation is particularly noteworthy for the potential confusion it can
cause. Statistical analysis of a data set often reveals that two variables (properties) of the
population under consideration tend to vary together, as if they were connected. For exam-
ple, a study of annual income that also looks at age of death might find that poor people
tend to have shorter lives than affluent people. The two variables are said to be correlated;
however, they may or may not be the cause of one another. The correlation phenomena
could be caused by a third, previously unconsidered phenomenon, called a lurking variable
or confounding variable. For this reason, there is no way to immediately infer the exis-
tence of a causal relationship between the two variables. (See Correlation does not imply
causation.)

For a sample to be used as a guide to an entire population, it is important that it is
truly a representative of that overall population. Representative sampling assures that the
inferences and conclusions can be safely extended from the sample to the population as
a whole. A major problem lies in determining the extent to which the sample chosen is
actually representative. Statistics offers methods to estimate and correct for any random
trending within the sample and data collection procedures. There are also methods for
designing experiments that can lessen these issues at the outset of a study, strengthening
its capability to discern truths about the population. Statisticians[citation needed] describe
stronger methods as more ”robust”.(See experimental design.)

Randomness is studied using the mathematical discipline of probability theory. Prob-
ability is used in ”Mathematical statistics” (alternatively, ”statistical theory”) to study the
sampling distributions of sample statistics and, more generally, the properties of statistical
procedures. The use of any statistical method is valid when the system or population under
consideration satisfies the assumptions of the method.

Misuse of statistics can produce subtle, but serious errors in description and interpreta-
tion subtle in the sense that even experienced professionals make such errors, and serious
in the sense that they can lead to devastating decision errors. For instance, social policy,
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medical practice, and the reliability of structures like bridges all rely on the proper use of
statistics. There is further discussion later. Even when statistical techniques are correctly
applied, the results can be difficult to interpret for those lacking expertise. The statistical
significance of a trend in the data which measures the extent to which a trend could be
caused by random variation in the sample may or may not agree with an intuitive sense of
its significance. The set of basic statistical skills (and skepticism) that people need to deal
with information in their everyday lives properly is referred to as statistical literacy.

16.5 Statistical methods

16.5.1 Experimental and observational studies

A common goal for a statistical research project is to investigate causality, and in particular
to draw a conclusion on the effect of changes in the values of predictors or independent
variables on dependent variables or response. There are two major types of causal statis-
tical studies: experimental studies and observational studies. In both types of studies, the
effect of differences of an independent variable (or variables) on the behavior of the depen-
dent variable are observed. The difference between the two types lies in how the study is
actually conducted. Each can be very effective. An experimental study involves taking mea-
surements of the system under study, manipulating the system, and then taking additional
measurements using the same procedure to determine if the manipulation has modified the
values of the measurements. In contrast, an observational study does not involve experi-
mental manipulation. Instead, data are gathered and correlations between predictors and
response are investigated.

16.5.2 Experiments

The basic steps of a statistical experiment are:
1. Planning the research, including finding the number of replicates of the study, using

the following information: preliminary estimates regarding the size of treatment effects,
alternative hypotheses, and the estimated experimental variability. Consideration of the
selection of experimental subjects and the ethics of research is necessary. Statisticians
recommend that experiments compare (at least) one new treatment with a standard treatment
or control, to allow an unbiased estimate of the difference in treatment effects.

2. Design of experiments, using blocking to reduce the influence of confounding vari-
ables, and randomized assignment of treatments to subjects to allow unbiased estimates of
treatment effects and experimental error. At this stage, the experimenters and statisticians
write the experimental protocol that shall guide the performance of the experiment and that
specifies the primary analysis of the experimental data.

3. Performing the experiment following the experimental protocol and analyzing the
data following the experimental protocol.

4. Further examining the data set in secondary analyses, to suggest new hypotheses for
future study.
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5. Documenting and presenting the results of the study.
Experiments on human behavior have special concerns. The famous Hawthorne study

examined changes to the working environment at the Hawthorne plant of the Western Elec-
tric Company. The researchers were interested in determining whether increased illumi-
nation would increase the productivity of the assembly line workers. The researchers first
measured the productivity in the plant, then modified the illumination in an area of the plant
and checked if the changes in illumination affected productivity. It turned out that produc-
tivity indeed improved (under the experimental conditions). However, the study is heavily
criticized today for errors in experimental procedures, specifically for the lack of a control
group and blindness. The Hawthorne effect refers to finding that an outcome (in this case,
worker productivity) changed due to observation itself. Those in the Hawthorne study be-
came more productive not because the lighting was changed but because they were being
observed

16.5.3 Observational study

An example of an observational study is one that explores the correlation between smoking
and lung cancer. This type of study typically uses a survey to collect observations about the
area of interest and then performs statistical analysis. In this case, the researchers would col-
lect observations of both smokers and non-smokers, perhaps through a case-control study,
and then look for the number of cases of lung cancer in each group.

16.5.4 Levels of measurement

There are four main levels of measurement used in statistics: nominal, ordinal, interval,
and ratio. Each of these have different degrees of usefulness in statistical research. Ra-
tio measurements have both a meaningful zero value and the distances between different
measurements defined; they provide the greatest flexibility in statistical methods that can
be used for analyzing the data.[citation needed] Interval measurements have meaningful
distances between measurements defined, but the zero value is arbitrary (as in the case with
longitude and temperature measurements in Celsius or Fahrenheit). Ordinal measurements
have imprecise differences between consecutive values, but have a meaningful order to
those values. Nominal measurements have no meaningful rank order among values.

Because variables conforming only to nominal or ordinal measurements cannot be rea-
sonably measured numerically, sometimes they are grouped together as categorical vari-
ables, whereas ratio and interval measurements are grouped together as quantitative or con-
tinuous variables due to their numerical nature.

16.5.5 Key terms used in statistics - Null hypothesis

Interpretation of statistical information can often involve the development of a null hypoth-
esis in that the assumption is that whatever is proposed as a cause has no effect on the
variable being measured.



132 Gogi Pantsulaia, Zurab Kvatadze and Givi Giorgadze

The best illustration for a novice is the predicament encountered by a jury trial. The null
hypothesis, H0, asserts that the defendant is innocent, whereas the alternative hypothesis,
H1, asserts that the defendant is guilty.

The indictment comes because of suspicion of the guilt. The H0 (status quo) stands in
opposition to H1 and is maintained unless H1 is supported by evidence beyond a reasonable
doubt. However, failure to reject H0 in this case does not imply innocence, but merely that
the evidence was insufficient to convict. So the jury does not necessarily accept H0 but fails
to reject H0. While to the casual observer the difference appears moot, misunderstanding
the difference is one of the most common and arguably most serious errors made by non-
statisticians. Failure to reject the H0 does NOT prove that the H0 is true, as any crook with
a good lawyer who gets off because of insufficient evidence can attest to. While one can not
prove a null hypothesis one can test how close it is to being true with a power test, which
tests for type II errors.

16.5.6 Key terms used in statistics - Error

Working from a null hypothesis two basic forms of error are recognized:
* Type I errors where the null hypothesis is falsely rejected giving a ”false positive”.
* Type II errors where the null hypothesis fails to be rejected and an actual difference

between populations is missed.
Error also refers to the extent to which individual observations in a sample differ from

a central value, such as the sample or population mean. Many statistical methods seek to
minimize the mean-squared error, and these are called ”methods of least squares.”

Measurement processes that generate statistical data are also subject to error. Many
of these errors are classified as random (noise) or systematic (bias), but other important
types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be
important.

16.5.7 Key terms used in statistics - Confidence intervals

Most studies will only sample part of a population and then the result is used to interpret
the null hypothesis in the context of the whole population. Any estimates obtained from
the sample only approximate the population value. Confidence intervals allow statisticians
to express how closely the sample estimate matches the true value in the whole population.
Often they are expressed as 95 confidence intervals. Formally, a 95 confidence interval of
a procedure is a range where, if the sampling and analysis were repeated under the same
conditions, the interval would include the true (population) value 95 of the time. This does
not imply that the probability that the true value is in the confidence interval is 95. (From
the frequentist perspective, such a claim does not even make sense, as the true value is not
a random variable. Either the true value is or is not within the given interval.) One quantity
that is in fact a probability for an estimated value is the credible interval from Bayesian
statistics.
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16.5.8 Key terms used in statistics - Significance

Statistics rarely give a simple Yes/No type answer to the question asked of them. Interpre-
tation often comes down to the level of statistical significance applied to the numbers and
often refer to the probability of a value accurately rejecting the null hypothesis (sometimes
referred to as the p-value).

Referring to statistical significance does not necessarily mean that the overall result is
significant in real world terms. For example, in a large study of a drug it may be shown that
the drug has a statistically significant but very small beneficial effect, such that the drug will
be unlikely to help the patient in a noticeable way.

16.5.9 Key terms used in statistics - Examples

Some well-known statistical tests and procedures are:
* Analysis of variance (ANOVA)
* Chi-square test
* Correlation
* Factor analysis
* MannWhitney U
* Mean square weighted deviation (MSWD)
* Pearson product-moment correlation coefficient
* Regression analysis
* Spearman’s rank correlation coefficient
* Student’s t-test
* Time series analysis

16.6 Application of Statistical Techniques

Statistical techniques are used in a wide range of types of scientific and social research, in-
cluding: Biostatistics, Computational biology, Computational sociology, Network biology,
Social science, Sociology and Social research. Some fields of inquiry use applied statistics
so extensively that they have specialized terminology. These disciplines include:

* Actuarial science
* Applied information economics
* Biostatistics
* Business statistics
* Chemometrics (for analysis of data from chemistry)
* Data mining (applying statistics and pattern recognition to discover knowledge from

data)
* Demography
* Econometrics
* Energy statistics
* Engineering statistics
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* Epidemiology
* Geography and Geographic Information Systems, specifically in Spatial analysis
* Image processing
* Psychological statistics
* Reliability engineering
* Social statistics

16.6.1 Key terms used in statistics -Specialized disciplines

In addition, there are particular types of statistical analysis that have also developed their
own specialized terminology and methodology:

* Bootstrap Jackknife Resampling
* Multivariate statistics
* Statistical classification
* Statistical surveys
* Structured data analysis (statistics)
* Survival analysis
* Statistics in various sports, particularly baseball and cricket
Statistics form a key basis tool in business and manufacturing as well. It is used to un-

derstand measurement systems variability, control processes (as in statistical process control
or SPC), for summarizing data, and to make data-driven decisions. In these roles, it is a key
tool, and perhaps the only reliable tool.

16.6.2 Key terms used in statistics -Statistical computing

The rapid and sustained increases in computing power starting from the second half of the
20th century have had a substantial impact on the practice of statistical science. Early sta-
tistical models were almost always from the class of linear models, but powerful computers,
coupled with suitable numerical algorithms, caused an increased interest in nonlinear mod-
els (such as neural networks) as well as the creation of new types, such as generalized linear
models and multilevel models.

Increased computing power has also led to the growing popularity of computationally
intensive methods based on resampling, such as permutation tests and the bootstrap, while
techniques such as Gibbs sampling have made use of Bayesian models more feasible. The
computer revolution has implications for the future of statistics with new emphasis on ”ex-
perimental” and ”empirical” statistics. A large number of both general and special purpose
statistical software are now available.

16.6.3 Key terms used in statistics -Misuse

There is a general perception that statistical knowledge is all-too-frequently intentionally
misused by finding ways to interpret only the data that are favorable to the presenter. The
famous saying, ”There are three kinds of lies: lies, damned lies, and statistics”.[11] which
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was popularized in the USA by Samuel Clemens and incorrectly attributed by him to Dis-
raeli (18041881), has come to represent the general mistrust [and misunderstanding] of
statistical science. Harvard President Lawrence Lowell wrote in 1909 that statistics, ”...like
veal pies, are good if you know the person that made them, and are sure of the ingredients.”

If various studies appear to contradict one another, then the public may come to distrust
such studies. For example, one study may suggest that a given diet or activity raises blood
pressure, while another may suggest that it lowers blood pressure. The discrepancy can
arise from subtle variations in experimental design, such as differences in the patient groups
or research protocols, which are not easily understood by the non-expert. (Media reports
usually omit this vital contextual information entirely, because of its complexity.)

By choosing (or rejecting, or modifying) a certain sample, results can be manipulated.
Such manipulations need not be malicious or devious; they can arise from unintentional
biases of the researcher. The graphs used to summarize data can also be misleading.

Deeper criticisms come from the fact that the hypothesis testing approach, widely used
and in many cases required by law or regulation, forces one hypothesis (the null hypothesis)
to be ”favored,” and can also seem to exaggerate the importance of minor differences in
large studies. A difference that is highly statistically significant can still be of no practical
significance. (See criticism of hypothesis testing and controversy over the null hypothesis.)

One response is by giving a greater emphasis on the p-value than simply reporting
whether a hypothesis is rejected at the given level of significance. The p-value, however,
does not indicate the size of the effect. Another increasingly common approach is to report
confidence intervals. Although these are produced from the same calculations as those of
hypothesis tests or p-values, they describe both the size of the effect and the uncertainty
surrounding it.

16.6.4 Key terms used in statistics -Statistics applied to mathematics or the
arts

Traditionally, statistics was concerned with drawing inferences using a semi-standardized
methodology that was ”required learning” in most sciences. This has changed with use
of statistics in non-inferential contexts. What was once considered a dry subject, taken in
many fields as a degree-requirement, is now viewed enthusiastically. Initially derided by
some mathematical purists, it is now considered essential methodology in certain areas.

* In number theory, scatter plots of data generated by a distribution function may be
transformed with familiar tools used in statistics to reveal underlying patterns, which may
then lead to hypotheses.

* Methods of statistics including predictive methods in forecasting, are combined with
chaos theory and fractal geometry to create video works that are considered to have great
beauty.

* The process art of Jackson Pollock relied on artistic experiments whereby underlying
distributions in nature were artistically revealed. With the advent of computers, methods of
statistics were applied to formalize such distribution driven natural processes, in order to
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make and analyze moving video art.
* Methods of statistics may be used predicatively in performance art, as in a card trick

based on a Markov process that only works some of the time, the occasion of which can be
predicted using statistical methodology.

* Statistics can be used to predicatively create art, as in the statistical or stochastic
music invented by Iannis Xenakis, where the music is performance-specific. Though this
type of artistry does not always come out as expected, it does behave in ways that are are
predictable and tuneable using statistics.
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Chapter 17

Point, Well-Founded and Effective
Estimations

Let (Ω,F ,P) be a probability space. Let X1, · · · ,Xn be a sequence of equally distributed
random variables, i.e.,

(∀y)(y ∈ R → FX1(y) = · · ·= FXn(y) = F(y)).

Suppose that results of n independent experiments is a vector x = (x1, · · · ,xn), which
can be considered as a partial realization of the random vector X = (X1, · · · ,Xn), i.e., there
exists an elementary event ω ∈ Ω such that

x = (x1, · · · ,xn) = (X1(ω), · · · ,Xn(ω)) = X(ω).

Definition 17.1 A vector x = (x1, · · · ,xn) is called n-dimensional sample or a sample
of size n.

Statistical Assumption 17. 1 Suppose that the probability measure PF defined by F (see
Section 5.3) belongs to the family of Borel probability measures (Pθ)θ∈Θ defined on R, i.e.
there is a parameter θ0 ∈ Θ such that PF = Pθ0 .

Definition 17.2 A triplet (Rn,B(Rn),Pn
θ )θ∈Θ is called probability-statistic model.

Under Statistical Assumption 17. 1, there is a parameter θ0 ∈ Θ such that FX1 = · · · =
FXn = Fθ0 , where Fθ0 is a distribution function generated by the Borel probability measure
Pθ0 .

Statistical Assumption 17. 2Suppose that a parameter set Θ is a Borel subset of the real
axis and is equipped with induced Borel σ-algebra.

Definition 17.3 A Borel mapping θ̂ : Rn → Θ called a point estimator or statistic of
size-n.

Definition 17.4 For a given sample x, a value e(x) = θ̂(x)−θ, is called the ”error” of
the estimator θ̂ as where θ is the parameter being estimated.
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Note that the error e(x) depends not only on the estimator (the estimation formula or
procedure), but on the sample.

Definition 17.5 The mean squared error of θ̂ is defined as the expected value
(probability-weighted average, over all samples) of the squared errors; that is,

MSE(θ̂)=E[(θ̂(X)−θ)2] =
∫

Ω
[(θ̂(X(ω))−θ)2]dP(ω)=

∫
Rn
(θ̂(x1, · · · ,xn)−θ)2dPn

θ (x1, · · · ,xn).

It is used to indicate how far, on average, the collection of estimates are from the single
parameter being estimated. Consider the following analogy. Suppose the parameter is the
bull’s-eye of a target, the estimator is the process of shooting arrows at the target, and the
individual arrows are estimates (samples). Then high MSE means the average distance
of the arrows from the bull’s-eye is high, and low MSE means the average distance from
the bull’s-eye is low. The arrows may or may not be clustered. For example, even if all
arrows hit the same point, yet grossly miss the target, the MSE is still relatively large. Note,
however, that if the MSE is relatively low, then the arrows are likely more highly clustered
(than highly dispersed).

Definition 17.6 For a given sample x , the sampling deviation of the estimator θ̂ is
defined as

d(x) = θ̂(x)−M(θ̂(X)) = θ̂(x)−M(θ̂),

where M(θ̂(X)) is the mathematical expectation of the estimator.

Note that the sampling deviation d(x) depends not only on the estimator, but on the
sample.

Definition 17.7 The variance of θ̂ is simply the expected value of the squared sampling
deviations; that is,

var(θ̂) = M[(θ̂−M(θ̂))2].

It is used to indicate how far, on average, the collection of estimates are from the ex-
pected value of the estimates. Note the difference between MSE and variance. If the param-
eter is the bull’s-eye of a target, and the arrows are estimates, then a relatively high variance
means the arrows are dispersed, and a relatively low variance means the arrows are clus-
tered. Some things to note: even if the variance is low, the cluster of arrows may still be
far off-target, and even if the variance is high, the diffuse collection of arrows may still be
unbiased. Finally, note that even if all arrows grossly miss the target, if they nevertheless
all hit the same point, the variance is zero.

Definition 17.8 The bias of θ̂ is defined as

B(θ̂) = M(θ̂)−θ.

It is the distance between the average of the collection of estimates, and the single
parameter being estimated. It also is the expected value of the error, since

M(θ̂)−θ = M(θ̂−θ).
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If the parameter is the bull’s-eye of a target, and the arrows are estimates, then a relatively
high absolute value for the bias means the average position of the arrows is off-target, and a
relatively low absolute bias means the average position of the arrows is on target. They may
be dispersed, or may be clustered. The relationship between bias and variance is analogous
to the relationship between accuracy and precision.

Definition 17.9 The estimator θ̂ is an unbiased estimator of θ if and only if B(θ̂) = 0,
i.e.

(∀θ)(θ ∈ Θ → Mθ θ̂ = θ),

where
Mθ θ̂ =

∫
Rn

θ̂(x1, · · · ,xn)dPn
θ (x1, · · · ,xn).

Note that bias is a property of the estimator, not of the estimate. Often, people refer to a
”biased estimate” or an ”unbiased estimate,” but they really are talking about an ”estimate
from a biased estimator,” or an ”estimate from an unbiased estimator.” Also, people often
confuse the ”error” of a single estimate with the ”bias” of an estimator. Just because the
error for one estimate is large, does not mean the estimator is biased. In fact, even if all
estimates have astronomical absolute values for their errors, if the expected value of the
error is zero, the estimator is unbiased. Also, just because an estimator is biased, does not
preclude the error of an estimate from being zero (we may have gotten lucky). The ideal
situation, of course, is to have an unbiased estimator with low variance, and also try to
limit the number of samples where the error is extreme (that is, have few outliers). Yet
unbiasedness is not essential. Often, if just a little bias is permitted, then an estimator can
be found with lower MSE and or fewer outlier sample estimates.

Remark 17. 1 The MSE, variance, and bias, are related:

MSE(θ̂) = var(θ̂)+(B(θ̂))2,

i.e. mean squared error = variance + square of bias. In particular, for an unbiased estimator,
the variance equals the MSE.

Definition 17. 10 The standard deviation of an estimator of θ (the square root of the
variance), or an estimate of the standard deviation of an estimator of θ , is called the standard
error of θ.

Definition 17. 11 An estimator θ̂ is called well-founded estimator of θ if limn→n Mθθ̂=
θ.

Definition 17. 12 An estimator θ̂ is called Effective estimator of θ if

Dθθ̂ = inf{DθT : T ∈ T n},

where
Dθθ̂ = Mθ(θ̂−Mθθ̂)2

and T n denotes a class of all well-founded estimators of θ.





Chapter 18

Point Estimators of Average and
Variance

Let (Ω,F ,P ) be a probability space. Let X1, · · · ,Xn be a sequence of equally distributed
random variables with average µ and variance δ2.

(Rn,B(Rn),Pn
θ )θ∈Θ is probability-statistic model such that Θ ⊆ R× (0,+∞) and there

exists (θ(1)
0 ,θ(2)

0 ) ∈ Θ such that (θ(1)
0 ,θ(2)

0 ) = (µ,δ2).

Definition 18. 1 An estimator Xn : Rn → R, defined by

Xn(x1, · · · ,xn) =
1
n

n

∑
k=1

xk,

is called a sample average (or mean).
Remark 18. 1 ”EXCEL’s” statistical function AVERAGE(x1 : xn) calculates a sample

average Xn(x1, · · · ,xn) =
1
n ∑n

k=1 xk.

Theorem 18.1 A sample average estimator Xn is an unbiased dot estimator of the first
coordinate of the parameter (θ(1),θ(2)) ∈ Θ.

Proof. We have
(∀θ)(θ = (θ(1),θ(2)) ∈ Θ → Mθ Xn =∫

Rn
Xn(x1, · · · ,xn)dPn

θ (x1, · · · ,xn) =∫
Rn

1
n

n

∑
k=1

xkdPn
θ (x1, · · · ,xn) =

1
n

n

∑
k=1

∫
Rn

xkdPn
θ (x1, · · · ,xn) =

1
n

n

∑
k=1

∫
R

xkdPθ(xk) =
1
n

nθ(1) = θ(1)).

�
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Definition 18. 2 An estimator S2
n : Rn → R, defined by

S2
n(x1, · · · ,xn) =

1
n

n

∑
k=1

(xk −Xn)
2

is called a sample variance.

Remark 18.2 ”EXCEL’s” statistical function VARP(x1 : xn) calculates a sample vari-
ance S2

n(x1, · · · ,xn) =
1
n ∑n

k=1(xk −Xn)
2.

Theorem 18.2 For sample variance estimator S2
n we have

(∀θ)(θ = (θ(1),θ(2)) ∈ Θ → Mθ S2
n =

n−1
n

θ(2)).

Proof.
(∀θ)(θ = (θ(1),θ(2)) ∈ Θ → Mθ S2

n =

Mθ(
n

∑
k=1

1
n

x2
k −

2
n

n

∑
k=1

xkXn +
1
n

n

∑
k=1

X2
n) =

Mθ(
1
n

n

∑
k=1

x2
k −2X2

n +X2
n) =

Mθ(
n

∑
k=1

1
n

x2
k −X2

n) =

Mθ x2
i −Mθ X2

n =

Dθ xi +(Mθ xi)
2 − (Dθ Xn +(Mθ Xn)

2) =

θ(2)+(θ(1))2 − 1
n

θ(2)− (θ(1))2 =
n−1

n
θ(2).

�

Definition 18. 3 An estimator S
′2
n : Rn → R, defined by

S
′2
n (x1, · · · ,xn) =

1
n−1

n

∑
k=1

(xk −Xn)
2

is called a corrected sample variance.

Remark 18. 3 ”EXCEL’s” statistical function VAR(x1 : xn) calculates a corrected
sample variance S

′2
n (x1, · · · ,xn) =

1
n−1 ∑n

k=1(xk −Xn)
2.

Theorem 18. 3 A corrected sample variance estimator S
′2
n is an unbiased dot estimator

of the second coordinate of the parameter (θ(1),θ(2)) ∈ Θ.
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Proof. For θ = (θ(1),θ(2)) ∈ Θ, we have

Mθ S
′2
n = Mθ

n
n−1

S2
n =

n
n−1

Mθ S2
n.

By Theorem 18. 2, we have

n
n−1

Mθ S2
n =

n
n−1

n−1
n

θ(2) = θ(2).

This ends the proof of Theorem 18.3.
�

Corollary 18. 1 The estimator θ̂ = (Xn,S
′2
n ) is an unbiased estimator of the parameter

θ.
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Exercises

18.1.1 Here are given annual salaries of 10 different secretaries ( 1000 American dollars
corresponds to one unit )

35.0; 67.5; 51.5; 53; 38; 42; 29.5; 31.5; 45; 37.5.
Suppose that the population of secretaries’ annual salaries are distributed normally. Find
a) an unbiased and effective estimate of an annual salary’s average ( Use ”EXCEL’s”

statistical function AVERAGE(x1 : xn) ).
b) an unbiased estimate of an annual salary’s variance ( Use ”EXCEL’s” statistical

function VAR(x1 : xn) ).
c) a well-founded estimate of an annual salary’s variance ( Use ”EXCEL’s” statistical

function VARP(x1 : xn) ).
18.1.2 Here are given weights of 10 accidentally chosen rolls ( 1 gram corresponds to

one unit )
55.0; 57.5; 51.5; 53; 48; 49; 45.5; 45.4; 46; 47.5.

Suppose that the population of rolls’ weights are distributed normally. Find
a) an unbiased and effective estimate of a roll’s weight average ( Use ”EXCEL’s”

statistical function AVERAGE(x1 : xn) ).
b) an unbiased estimate of a roll’s weight variance ( Use ”EXCEL’s” statistical function

VAR(x1 : xn) ).
c) a well-founded estimate of a roll’s weight variance ( Use ”EXCEL’s” statistical

function VARP(x1 : xn) ).
18.1.3 Here are given weights of 10 accidentally chosen apples ( 1 gram corresponds to

one unit )
155.0; 157.5; 151.5; 153; 148; 149; 145.5; 145.4; 146; 147.5.

Suppose that the population of apples’ weights are distributed normally. Find
a) an unbiased and effective estimate of an apple’s weight average ( Use ”EXCEL’s”

statistical function AVERAGE(x1 : xn) ).
b) an unbiased estimate of an apple’s weight variance ( Use ”EXCEL’s” statistical

function VAR(x1 : xn) ).
c) a well-founded estimate of an apple’s weight variance ( Use ”EXCEL’s” statistical

function VARP(x1 : xn) ).
18.1.4 Here are given lengths of 10 accidentally chosen pencils ( 1 mm corresponds to

one unit )
150.0; 150.5; 150.5; 153; 149; 149; 140.5; 140.4; 140; 140.5.

Suppose that the population of pencils lengths are distributed normally. Find
a) an unbiased and effective estimate of a pencil’s length average ( Use ”EXCEL’s”

statistical function AVERAGE(x1 : xn) ).
b) an unbiased estimate of a pencil’s length variance ( Use ”EXCEL’s” statistical

function VAR(x1 : xn) ).
c) a well-founded estimate of a pencil’s length variance ( Use ”EXCEL’s” statistical

function VARP(x1 : xn) ).
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18.1.5 Let the random variable ξ follow a normal distribution with a mean µ and a
standard deviation σ. Let X25 be the mean of samples of sizes 25, randomly and indepen-
dently selected from the population. Consider the following values: A := P({ω : µ−0,2σ<
X25(ω)< µ+σ}); B := P({ω : µ−σ < X25(ω)< µ+0,2σ}); Which of the following state-
ments is true?

a) A = B; b) A > B; c) A < B;
d) Unable to determine the relationship between values A and B.

18.1.6 In a recent survey of high school students. It was found that the average amount
of money spent on entertainment each week was normally distributed with a mean of 52,30
dollars and a standard deviation of 18,23 dollars. Assuming these values are representative
of all high school students, what is the probability that for a sample of 25, the average
amount spent by each student exceeds 60 dollars?

a) 0,0174; b) 0,0185; c) 0,0195; d) 0,0295.

8.1.7 Let the random variable ξ follow a normal distribution with a mean µ and a stan-
dard deviation σ. Let X16 and X25 be the means of samples of sizes 16 and 25, respectively,
randomly and independently selected from the population. Consider the following values :
A := P({ω : X16(ω) < µ}); B := P({ω : X25(ω) < µ}); Which of the following statements
is true?

a) A = B; b) A > B; c) A < B;
d) Unable to determine the relationship between values A and B.





Chapter 19

Interval Estimation. Confidence
intervals. Credible intervals. Interval
Estimators of Parameters of
Normally Distributed Random
Variable

In statistics, interval estimation is the use of sample data to calculate an interval of possible
(or probable) values of an unknown population parameter, in contrast to point estimation,
which is a single number. Neyman (1937) identified interval estimation (”estimation by
interval”) as distinct from point estimation (”estimation by unique estimate”). In doing so,
he recognised that then-recent work quoting results in the form of an estimate plus-or-minus
a standard deviation indicated that interval estimation was actually the problem statisticians
really had in mind.

The most prevalent forms of interval estimation are:
a) confidence intervals (a frequentist method);
b) credible intervals (a Bayesian method).
In statistics, a confidence interval (CI) is a particular kind of interval estimate of a pop-

ulation parameter and is used to indicate the reliability of an estimate. It is an observed
interval (i.e it is calculated from the observations), in principle different from sample to
sample, that frequently includes the parameter of interest, if the experiment is repeated.
How frequently the observed interval contains the parameter is determined by the confi-
dence level or confidence coefficient.

A confidence interval with a particular confidence level is intended to give the assur-
ance that, if the statistical model is correct, then taken over all the data that might have
been obtained, the procedure for constructing the interval would deliver a confidence in-
terval that included the true value of the parameter the proportion of the time set by the
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confidence level. More specifically, the meaning of the term ”confidence level” is that, if
confidence intervals are constructed across many separate data analyses of repeated (and
possibly different) experiments, the proportion of such intervals that contain the true value
of the parameter will approximately match the confidence level; this is guaranteed by the
reasoning underlying the construction of confidence intervals.

A confidence interval does not predict that the true value of the parameter has a par-
ticular probability of being in the confidence interval given the data actually obtained.(An
interval intended to have such a property, called a credible interval, can be estimated us-
ing Bayesian methods; but such methods bring with them their own distinct strengths and
weaknesses).

Interval estimates can be contrasted with point estimates. A point estimate is a single
value given as the estimate of a population parameter that is of interest, for example the
mean of some quantity. An interval estimate specifies instead a range within which the
parameter is estimated to lie. Confidence intervals are commonly reported in tables or
graphs along with point estimates of the same parameters, to show the reliability of the
estimates.

For example, a confidence interval can be used to describe how reliable survey results
are. In a poll of election voting-intentions, the result might be that 40 % of respondents
intend to vote for a certain party. A 90%confidence interval for the proportion in the whole
population having the same intention on the survey date might be 38% to 42%. From the
same data one may calculate a 95% confidence interval, which might in this case be 36%
to 44%. A major factor determining the length of a confidence interval is the size of the
sample used in the estimation procedure, for example the number of people taking part in a
survey.

Definition 19.1 Let (Rn,B(Rn),Pn
θ )θ∈Θ be a probability-statistic model and T (1)

n : Rn →
R and T (2)

n : Rn → R be two statistics such that T (1)
n < T (2)

n .
A random interval (T (1)

n (x),T (2)
n )(x) , based on a random sample x ∈ Rn (or its observed

value x) from that distribution is called a confidence interval with confidence level γ(0 <
γ < 1) for a parameter θ of a probability distribution if the following condition

(∀θ)(θ ∈ Θ → Pn
θ ({x ∈ Rn : T (1)

n (x)≤ θ ≤ T (2)
n )(x)}) = γ)

holds.

The confidence interval is specified by the pair of statistics (i.e., observable random
variables) T (1)

n (x) and T (2)
n ).

Remark 19.1 Let us discuss how we must interpret confidence intervals.
( see web site http://stattrek.com/AP-Statistics-4/Confidence-Interval.aspx?Tutorial=stat).
Consider the following confidence interval: We are 90% confident that the population

mean is greater than 100 and less than 200.
Some people think this means there is a 90% chance that the population mean falls

between 100 and 200. This is incorrect. Like any population parameter, the population
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mean is a constant, not a random variable. It does not change. The probability that a
constant falls within any given range is always 0.00 or 1.00.

The confidence level describes the uncertainty associated with a sampling method. Sup-
pose we used the same sampling method to select different samples and to compute a dif-
ferent interval estimate for each sample. Some interval estimates would include the true
population parameter and some would not. A 90% confidence level means that we would
expect 90% of the interval estimates to include the population parameter; A 95%confidence
level means that 95% of the intervals would include the parameter; and so on.

How to Construct a Confidence Interval
There are four steps to constructing a confidence interval.
* Identify a sample statistic. Choose the statistic (e.g, mean, standard deviation) that

you will use to estimate a population parameter.
* Select a confidence level. As we noted in the previous section, the confidence level

describes the uncertainty of a sampling method. Often, researchers choose 90%, 95%, or
99% confidence levels; but any percentage can be used.

* Find the margin of error. If you are working on a homework problem or a test question,
the margin of error may be given. Often, however, you will need to compute the margin of
error, based on one of the following equations.

Margin of error = Critical value * Standard deviation of statistic
Margin of error = Critical value * Standard error of statistic
* Specify the confidence interval. The uncertainty is denoted by the confidence level.

And the range of the confidence interval is defined by the following equation.
Confidence interval = sample statistic + Margin of error
The sample problem in the next section applies the above four steps to construct a 95%

confidence interval for a mean score. The next few theorems discuss this topic in greater
detail.

Theorem 19. 1 Let X1, · · · ,Xn be a sequence of independent normally distributed real-
valued random values with parameters (µ,σ2). Suppose that the parameter µ is unknown.
Then an interval

(Xn −
σz α

2√
n

;Xn +
σz α

2√
n
)

is a confidence interval with confidence level γ = 1−α for a parameter µ of a probability
distribution, where z α

2
is defined by Φ(z α

2
) = 1− α

2 ).
Proof. Note that probability-statistical model have a form

(Rn,B(Rn),Pn
θ )θ∈Θ,

where Pθ is a linear Gaussian measure with parameters (θ,σ2).
For θ ∈ Θ, we have

Pn
θ ({x ∈ Rn : Xn −

σz α
2√
n
≤ θ ≤ Xn +

σz α
2√
n
}) =



150 Gogi Pantsulaia, Zurab Kvatadze and Givi Giorgadze

Pn
θ ({x ∈ Rn :

1
n

n

∑
k=1

xk −
σz α

2√
n
≤ θ ≤ 1

n

n

∑
k=1

xk +
σz α

2√
n
}) =

Pn
θ ({x ∈ Rn :

n

∑
k=1

xk −σz α
2

√
n ≤ θn ≤

n

∑
k=1

xk +σz α
2

√
n}) =

Pn
θ ({x ∈ Rn : −σz α

2

√
n ≤ θn−

n

∑
k=1

xk ≤ σz α
2

√
n}) =

Pn
θ ({x ∈ Rn : −z α

2
≤ θn−∑n

k=1 xk

σ
√

n
≤ z α

2
}) =

Pn
θ ({x ∈ Rn : −z α

2
≤ ∑n

k=1 xk −θn
σ
√

n
≤−z α

2
}) =

P({ω ∈ Ω : −z α
2
≤ ∑n

k=1 Xk(ω)−θn
σ
√

n
≤−z α

2
}) =

= Φ(z α
2
)−Φ(−z α

2
) = 1−α.

�
Remark 19. 1 ”EXCEL’s” statistical function CONFIDENCE(α,σ,n) calculates the

value of z α
2
. Hence a confidence interval with confidence level γ = 1−α for a parameter µ

of a probability distribution can be calculated by(
AVERAGE(x1 : xn)−CONFIDENCE(α,σ,n);

AVERAGE(x1 : xn)+CONFIDENCE(α,σ,n)
)

Theorem 19. 2 Let X1, · · · ,Xn be a sequence of independent normally distributed real-
valued random values with parameters (µ,σ2). Suppose that the parameters µ and σ2 are
unknown. Then an interval (

Xn − tn−1, α
2

S
′
n√
n

;Xn + tn−1, α
2

S
′
n√
n

)
is a confidence interval with confidence level γ = 1−α for a parameter µ of a probability
distribution. The value tn−1, α

2
is defined by

Ftn−1(tn−1, α
2
) = 1− α

2
,

where Ftn−1 denotes a distribution function of the Students random variable with degree of
freedom n−1 (see Example 10.6).

Proof. Note that probability-statistical model have a form

(Rn,B(Rn),Pn
θ )θ∈Θ,
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where Pθ is a linear Gaussian measure with parameters θ = (µ,σ2).
For θ ∈ Θ, we have

Pn
θ
(
{x ∈ Rn : Xn(x)− tn−1, α

2

S
′
n(x)√

n
≤ µ ≤ Xn(x)+ tn−1, α

2

S
′
n(x)√

n
}
)
=

Pn
θ
(
{x ∈ Rn : −tn−1, α

2

S
′
n(x)√

n
≤ µ−Xn(x)≤ tn−1, α

2

S
′
n(x)√

n
}
)
=

Pn
θ
(
{x ∈ Rn : −tn−1, α

2

S
′
n(x)√

n
≤ Xn(x)−µ ≤ tn−1, α

2

S
′
n(x)√

n
}
)
=

Pn
θ
(
{x ∈ Rn : −tn−1, α

2
≤ Xn(x)−µ

S′n(x)√
n

≤ tn−1, α
2
}
)
=

P
(
{ω ∈ Ω : −tn−1, α

2
≤ Xn(ω)−µ

S′n(ω)√
n

≤ tn−1, α
2
}
)
=

Ftn−1(tn−1, α
2
)−Ftn−1(−tn−1,1− α

2
) = 1−α.

�

Remark 19. 2 In the proof of Theorem 19.2, we have used a validity of the fact that a
random variable

Xn −µ
S′n√

n

=

√
n(∑n

k=1 Xk −nµ)√
1

n−1 ∑n
i=1(Xi − 1

n ∑n
i=1 Xi)2

is Student’s random variable with degree of freedom n−1.

Remark 19. 3 Under conditions of Theorem 19.2, a confidence interval with con-
fidence level γ = 1−α for a parameter µ of a probability distribution can be calculated
by

(
AVERAGE(x1 : xn)− tn−1, α

2
SQRT{1

n
VAR(x1 : xn)};

AVERAGE(x1 : xn)+ tn−1, α
2
SQRT{1

n
VAR(x1 : xn)}

)
Example 19.1 Suppose we want to estimate the average weight of an adult male in

Dekalb County, Georgia. We draw a random sample of 1,000 men from a population of
1,000,000 men and weigh them. We find that the average man in our sample weighs 180
pounds, and the standard deviation of the sample( equivalently, square root from the sample
variance ) is 30 pounds. What is the 95% confidence interval.

Solution. We have
AVERAGE(x1 : x1000) = 180;
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VARP(x1 : x1000) = 900;
VAR(x1 : x1000) =

1000
999 900 = 900,9009009;

TINV(0,025;999) = 2,244786472;
Finally, we get

(
AVERAGE(x1 : xn)−TINV(

α
2
,n−1)SQRT{1

n
VAR(x1 : xn)};

AVERAGE(x1 : xn)+TINV(
α
2
,n−1)SQRT{1

n
VAR(x1 : xn)}

)
=
(
177,869343;182,130657

)
Theorem 19. 3 Let X1, · · · ,Xn be a sequence of independent normally distributed real-

valued random values with parameters (µ,σ2). Suppose that the parameters µ and σ2 are
unknown. Then an interval ((n−1)S

′2
n

χn, α
2

;
(n−1)S

′2
n

χn,1− α
2

)
is a confidence interval with confidence level γ = 1−α for a parameter σ2 of a probability
distribution. The values χn, α

2
and χn,1− α

2
are upper fractiles of levels α

2 and 1− α
2 of a

distribution function of the χ2
n with degree of freedom n, respectively (see Example 10.4).

Proof. Note that probability-statistical model have a form

(Rn,B(Rn),Pn
θ )θ∈Θ,

where Pθ is a linear Gaussian measure with parameters θ = (µ,σ2).
Take into account the validity of the fact

(n−1)S
′2
n

σ2 =
n

∑
k=1

(
Xi −Xn

σ
)2 = χ2

n.

we get

Pn
θ ({x : x ∈ Rn &

(n−1)S
′2
n (x)

χn, α
2

≤ σ2 ≤ (n−1)S
′2
n (x)

χn,1− α
2

}) =

Pn
θ ({x : x ∈ Rn &χn,1− α

2
≤ (n−1)S

′2
n (x)

σ2 ≤ χn, α
2
}) =

P({ω : ω ∈ Ω &χn,1− α
2
≤ χ2

n ≤ χn, α
2
}) = 1−α.

This ends the proof of Theorem 19.3.

�

Remark 19. 4 Under conditions of Theorem 19.3, a confidence interval with con-
fidence level γ = 1−α for a parameter σ2 of a probability distribution can be calculated
by
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((n−1)VAR(x1 : xn)

CHIINV(α
2 ,n)

;
(n−1)VAR(x1 : xn)

CHIINV(1− α
2 ,n)

)
Theorem 19. 4 Let X1, · · · ,Xn be a sequence of independent normally distributed real-

valued random values with parameters (µ,σ2). Suppose that the parameter σ2 is unknown.
Then an interval (∑n

i=1(Xi −µ)2

χn, α
2

;
∑n

i=1(Xi −µ)2

χn,1− α
2

)
is a confidence interval with confidence level γ = 1−α for a parameter σ2 of a probability
distribution. The values χn, α

2
and χn,1− α

2
are upper fractiles of levels α

2 and 1− α
2 of a

distribution function of the χ2
n with degree of freedom n, respectively (see Example 10.4).

Proof. Note that probability-statistical model have a form

(Rn,B(Rn),Pn
θ )θ∈Θ,

where Pθ is a linear Gaussian measure with parameters θ = (µ,σ2).
We set

S2
n(x) =

1
n

n

∑
k=1

(Xi(x)−µ)2.

Note that

nS2
n(x)
σ2 =

n

∑
i=1

(
Xi(x)−µ

σ
)2 = χ2

n(x).

Hence we get

Pn
θ ({x : x ∈ Rn &

∑n
i=1(Xi(x)−µ)2

χn, α
2

≤ σ2 ≤ ∑n
i=1(Xi(x)−µ)2

χn,1− α
2

}) =

Pn
θ ({x : x ∈ Rn &χn,1− α

2
≤

n

∑
i=1

(
Xi(x)−µ

σ
)2 ≤ χn, α

2
}) =

Pn
θ ({x : x ∈ Rn &χn,1− α

2
≤ χ2

n(x)≤ χn, α
2
}) =

P({ω : ω ∈ Ω &χn,1− α
2
≤ χ2

n(ω)≤ χn, α
2
}) = 1−α.

This ends the proof of Theorem 19.4.

�

Remark 19. 5 Under conditions of Theorem 19. 4, a confidence interval with con-
fidence level γ = 1−α for a parameter σ2 of a probability distribution can be calculated
by
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( ∑n
i=1(xi −µ)2

CHIINV(α
2 ,n)

;
(∑n

i=1(xi −µ)2

CHIINV(1− α
2 ,n)

)
Exercises

19.1 Here are given annual salaries of 10 different secretaries ( 1000 American dollars
corresponds to one unit )

35.0; 67.5; 51.5; 53; 38; 42; 29.5; 31.5; 45; 37.5.
Suppose that the population of secretaries’ annual salaries are distributed normally with

parameters (µ,σ2). Find
a) the 95% confidence interval for parameter µ if σ = 10;
b) the 90% confidence interval for parameter µ if both parameters µ and σ2 are unknown;
c) the 95% confidence interval for parameter σ2 if both parameters µ and σ2 are un-

known;
d) the 95% confidence interval for parameter σ2 if µ = 40;
19.2 Here are given weights of 10 accidentally chosen rolls ( 1 gram corresponds to one

unit )
55.0; 57.5; 51.5; 53; 48; 49; 45.5; 45.4; 46; 47.5.

Suppose that the population of rolls’ weights are distributed normally with parameters
(µ,σ2). Find

a) the 95% confidence interval for parameter µ if σ = 10;
b) the 90% confidence interval for parameter µ if both parameters µ and σ2 are unknown;
c) the 95% confidence interval for parameter σ2 if both parameters µ and σ2 are un-

known;
d) the 95% confidence interval for parameter σ2 if µ = 45;
19.3 Here are given weights of 10 accidentally chosen apples ( 1 gram corresponds to

one unit )
155.0; 157.5; 151.5; 153; 148; 149; 145.5; 145.4; 146; 147.5.

Suppose that the population of apples’ weights are distributed normally with parameters
(µ,σ2). Find

a) the 95% confidence interval for parameter µ if σ = 15;
b) the 90% confidence interval for parameter µ if both parameters µ and σ2 are unknown;
c) the 95% confidence interval for parameter σ2 if both parameters µ and σ2 are un-

known;
d) the 95% confidence interval for parameter σ2 if µ = 140;
19.4 Here are given lengths of 10 accidentally chosen pencils ( 1 mm corresponds to

one unit )
150.0; 150.5; 150.5; 153; 149; 149; 140.5; 140.4; 140; 140.5.

Suppose that the population of pencils lengths are distributed normally with parameters
(µ,σ2). Find

a) the 95% confidence interval for parameter µ if σ = 10;
b) the 90% confidence interval for parameter µ if both parameters µ and σ2 are unknown;
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c) the 95% confidence interval for parameter σ2 if both parameters µ and σ2 are un-
known;

d) the 95% confidence interval for parameter σ2 if µ = 145;





Chapter 20

Simple Hypothesis

Relationship with other statistical topics Confidence intervals are closely related to statis-
tical significance testing. For example, if one wants to test the null hypothesis that some
estimated parameter θ, θ = 0 against the alternative that θ ̸= 0, then this test can be per-
formed by finding if the confidence interval for θ contains 0.

More generally, given the availability of a hypothesis testing procedure that can test
the null hypothesis θ = θ0 against the alternative that θ ̸= θ0 for any value of θ0, then a
confidence interval with confidence level γ= 1−α can be defined as containing any number
θ0 for which the corresponding null hypothesis is not rejected at significance level α.

In consequence, if the estimates of two parameters (for example, the mean values of
a variable in two independent groups of objects) have confidence intervals at a given γ
value that do not overlap, then the difference between the two values is significant at the
corresponding value of α. However, this test is too conservative. If two confidence intervals
overlap, the difference between the two means still may be significantly different.

Confidence regions generalize the confidence interval concept to deal with multiple
quantities. Such regions can indicate not only the extent of likely sampling errors but can
also reveal whether (for example) it is the case that if the estimate for one quantity is unre-
liable then the other is also likely to be unreliable.

In applied practice, confidence intervals are typically stated at the 95 % confidence
level. However, when presented graphically, confidence intervals can be shown at several
confidence levels, for example 50%, 95% and 99%.

A statistical hypothesis test is a method of making decisions using data, whether from
a controlled experiment or an observational study (not controlled). In statistics, a result is
called statistically significant if it is unlikely to have occurred by chance alone. The phrase
”test of significance” was coined by Ronald Fisher: ”Critical tests of this kind may be called
tests of significance, and when such tests are available we may discover whether a second
sample is or is not significantly different from the first.”

Hypothesis testing is sometimes called confirmatory data analysis, in contrast to ex-
ploratory data analysis. In frequency probability, these decisions are almost always made
using null-hypothesis tests (i.e., tests that answer the question Assuming that the null hy-

157
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pothesis is true, what is the probability of observing a value for the test statistic that is
at least as extreme as the value that was actually observed?). One use of hypothesis test-
ing is deciding whether experimental results contain enough information to cast doubt on
conventional wisdom.

Statistical hypothesis testing is a key technique of frequentist statistical inference. The
Bayesian approach to hypothesis testing is to base rejection of the hypothesis on the pos-
terior probability. Other approaches to reaching a decision based on data are available via
decision theory and optimal decisions.

The critical region of a hypothesis test is the set of all outcomes which, if they occur,
will lead us to decide that there is a difference. That is, cause the null hypothesis to be
rejected in favor of the alternative hypothesis. The critical region is usually denoted by C.

The following examples should solidify these ideas.

Example 20.1( Court Room Trial)
A statistical test procedure is comparable to a trial; a defendant is considered not guilty

as long as his guilt is not proven. The prosecutor tries to prove the guilt of the defendant.
Only when there is enough charging evidence the defendant is convicted.

In the start of the procedure, there are two hypotheses H0: ”the defendant is not guilty”,
and H1 : ”the defendant is guilty”. The first one is called null hypothesis, and is for the time
being accepted. The second one is called alternative (hypothesis). It is the hypothesis one
tries to prove.

The hypothesis of innocence is only rejected when an error is very unlikely, because one
doesn’t want to convict an innocent defendant. Such an error is called error of the first kind
(i.e. the conviction of an innocent person), and the occurrence of this error is controlled
to be rare. As a consequence of this asymmetric behaviour, the error of the second kind
(acquitting a person who committed the crime), is often rather large.

Null Hypothesis Alternative Hypothesis
(H0) is true (H1) is true
He truly is not guilty He truly is guilty

Accept Null Hypothesis Right decision Wrong decision
Aquittal Type II Error
Reject Null Hypothesis Wrong decision Right decision
Conviction Type I Error

Definition 20.1 Simple hypothesis is any hypothesis which specifies the population
distribution completely.

Definition 20.2 Composite hypothesis is any hypothesis which does not specify the
population distribution completely.

Definition 20.3 Statistical test is a decision function that takes its values in the set of
hypotheses. Region of acceptance
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Definition 20.4 Region of acceptance is the set of values for which we fail to reject the
null hypothesis.

Definition 20.5 Region of rejection (equivalently, Critical region) is the set of values of
the test statistic for which the null hypothesis is rejected.

Definition 20.5 Power of a test (1−β) is the test’s probability of correctly rejecting the
null hypothesis. The complement of the false negative rate, β.

Definition 20.6 For simple hypotheses, size (equivalently, significance level of a test
(α) is the test’s probability of incorrectly rejecting the null hypothesis. The false positive
rate. For composite hypotheses this is the upper bound of the probability of rejecting the
null hypothesis over all cases covered by the null hypothesis.

Definition 20.7 For a given size or significance level, most powerful test is the test with
the greatest power.

Definition 20.8 Uniformly most powerful test (UMP) is a test with the greatest power
for all values of the parameter being tested.

Definition 20.9 When considering the properties of a test as the sample size grows, a
test is said to be consistent if, for a fixed size of test, the power against any fixed alternative
approaches 1 in the limit.

Definition 20.10 For a specific alternative hypothesis, a test is said to be unbiased when
the probability of rejecting the null hypothesis is not less than the significance level when
the alternative is true and is less than or equal to the significance level when the null hy-
pothesis is true.

Definition 20.11 A test is conservative if, when constructed for a given nominal signif-
icance level, the true probability of incorrectly rejecting the null hypothesis is never greater
than the nominal level.

Definition 20.12 Uniformly most powerful unbiased (UMPU) test is a test which is
UMP in the set of all unbiased tests.

Definition 20.13 The probability, assuming the null hypothesis is true, of observing
observing a result at least as extreme as the test statistic, is called p-value.

Definition 20.14 A triplet (Tn,U0,U1), where
1. Tn : Rn → R is a statistic (equivalently, Borel measurable function),
2. U0 ∪U1 = R, U0 ∩U1 = /0 and U0 ∈ B(R),
is called statistical test (or criterion) for acceptance of null hypothesis.
For sample x ∈ Rn, we accept null hypothesis H0 if Tn(x)∈U0 and reject null hypothesis

H0, otherwise.
Tn is called a statistic of the criterion (Tn,U0,U1).
U0 is called region of rejection (equivalently, critical region) for null hypothesis H0.

Definition 20.15 A decision obtained by the criterion (Tn,U0,U1) is error of type I, if
reject null hypothesis H0 whenever null hypothesis H0 is true.
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Definition 20.16 A decision obtained by the criterion (Tn,U0,U1) is error of type II, if
accept null hypothesis H0 whenever null hypothesis H0 is false.

Definition 20.17 The value

Pn
θ ({x : Tn(x) ∈U1|H0}) = α

is called size (equivalently, significance level) of a test Tn.

Definition 20.18 The value

Pn
θ ({x : Tn(x) ∈U0|H1}) = β

is called power of a test Tn.

In many to cases it is not probably simultaneously to reduce values α and β. By this
reason, we fix the probability α of the error of type I and consider such critical regions U1
for which the following condition

Pn
θ ({x : Tn(x) ∈U1|H0})≤ α

holds. Further, between such critical regions we choose such a region U∗
1 for which the

error of type II is maximal.

In the statistical literature, statistical hypothesis testing plays a fundamental role. The
usual line of reasoning is as follows:

1. We start with a research hypothesis of which the truth is unknown.
2. The first step is to state the relevant null (H0) and alternative hypotheses(H1). This is

important as mis-stating the hypotheses will muddy the rest of the process. Specifically, the
null hypothesis allows to attach an attribute: it should be chosen in such a way that it allows
us to conclude whether the alternative hypothesis can either be accepted or stays undecided
as it was before the test.

3. The second step is to consider the statistical assumptions being made about the
sample in doing the test ; for example, assumptions about the statistical independence or
about the form of the distributions of the observations. It helps us to construct a probability-
statistical model (Rn,B(Rn),Pn

θ )θ∈Θ . This is equally important as invalid assumptions will
mean that the results of the test are invalid.

4. Decide which test is appropriate, and stating the relevant test statistic Tn.
5. Derive the distribution of the test statistic under the null hypothesis H0 from the

assumptions. In standard cases this will be a well-known result. For example the test
statistics may follow a Student’s t distribution or a normal distribution.

6. The distribution of the test statistic partitions the possible values of Tn into U1 (the
so called critical region) for which the null-hypothesis is rejected , and U0 those for which
it is not.

7. We fix the probability α of the error of type I and consider such critical regions U1
for which the following condition

Pn
θ ({x : Tn(x) ∈U1|H0})≤ α
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holds. Further, between such critical regions we choose such a region U∗
1 for which the

error of type II is maximal.
8. Compute from the observations the observed value tobs of the test statistic Tn.
9. Decide to either fail to reject the null hypothesis or reject it in favor of the alternative.

The decision rule is to reject the null hypothesis H0 if the observed value tobs is in the
critical region U∗

1 , and to accept or ”fail to reject” the hypothesis otherwise.
By using results considered in Section 19, we get the following statistical tests for sim-

ple hypothesis.

20.1 Test 1. The decision rule for null hypothesis H0 : µ = µ0
whenever σ2 is known for normal population

Null Hypothesis : H0 : µ = µ0
Significance Level : α
Test statistic : Tn(x1, · · · ,xn) =

∑n
k=1 xk−µ0n

σ
√

n .

Observed value : tobs =
∑n

k=1 xk−µ0n
σ
√

n .
Alternative : critical region U1 = (−∞;−z α

2
)∪ (z α

2
;+∞)

where z α
2

is defined by Φ(z α
2
) = 1− α

2 ).

20.2 Test 2. The decision rule for null hypothesis H0 : µ = µ0
whenever σ2 is unknown for normal population

Null Hypothesis : H0 : µ = µ0
Significance Level : α
Test statistic : Tn(x1, · · · ,xn) =

Xn−µ
S
′
n√
n

.

Observed value : tobs =
Xn−µ

S
′
n√
n

.

Alternative : critical region U1 = (−∞;−tn−1, α
2
)∪ (tn−1, α

2
;+∞).

The value tn−1, α
2

is defined by

Ftn−1(tn−1, α
2
) = 1− α

2
,

where Ftn−1 denotes a distribution function of the Students random variable with degree of
freedom n−1 (see Example 10.6).
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20.3 Test 3. The decision rule for null hypothesis H0 : σ2 = σ2
0

whenever µ is unknown for normal population

Null Hypothesis : H0 : σ2 = σ2
0

Significance Level : α
Test statistic : Tn(x1, · · · ,xn) =

(n−1)S
′2
n

σ2
0

.

Observed value : tobs =
(n−1)S

′2
n

σ2
0

.

Alternative : critical region U1 = (0;χn,1− α
2
)∪ (χn, α

2
;+∞).

The values χn, α
2

and χn,1− α
2

are upper fractiles of levels α
2 and 1− α

2 of a distribution
function of the χ2

n with degree of freedom n, respectively (see Example 10.4).

20.4 Test 4. The decision rule for null hypothesis H0 : σ2 = σ2
0

whenever µ is known for normal population

Null Hypothesis : H0 : σ2 = σ2
0

Significance Level : α
Test statistic : Tn(x1, · · · ,xn) = ∑n

k=1(
xi−µ
σ0

)2.
Observed value : tobs = ∑n

k=1(
xi−µ
σ0

)2.
Alternative : critical region U1 = (0;χn,1− α

2
)∪ (χn, α

2
;+∞).

The values χn, α
2

and χn,1− α
2

are upper fractals of levels α
2 and 1− α

2 of a distribution
function of the χ2

n with degree of freedom n, respectively (see Example 10.4).



Chapter 21

On consistent estimators of a useful
signal in the linear one-dimensional
stochastic model when an expectation
of the transformed signal is not
defined

21.1 introduction

In the sequel, under N we understand the set {1,2, · · ·}. Suppose that Θ is a vector sub-
space of the infinite-dimensional topological vector space of all real-valued sequences RN

equipped with the product topology.
In the information transmission theory the following linear one-dimensional stochastic

system
(ξn)n∈N = (θn)n∈N +(∆n)n∈N

is under consideration, where (θn)n∈N ∈ Θ is a sequence of useful signals, (∆n)n∈N is se-
quence of independent equally distributed random variables (so called a generalized “white
noise” ) defined on some probability space (Ω,F ,P) and (ξn)n∈N is a sequence of trans-
formed signals.

Let µ be a Borel probability measure on R defined by a random variable ∆1. Then N-
power of the measure µ denoted by µN coincides with a Borel probability measure on RN

defined by a generalized “white noise”, i.e.,

(∀X)(X ∈ B(RN)→ µN(X) = P({ω : ω ∈ Ω & (∆n(ω))n∈N ∈ X})),

where B(RN) denotes the Borel σ-algebra of subsets of RN .
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In the information transmission theory the general decision is that the Borel probability
measure λ, defined by the sequence of transformed signals (ξn)n∈N coincides with

(
µN

)
θ0

for some θ0 ∈ Θ provided

(∃θ0)(θ0 ∈ Θ → (∀X)(X ∈ B(RN)→ λ(X) =
(
µN)

θ0
(X))),

where
(
µN

)
θ0
(X) = µN(X −θ0) for X ∈ B(RN).

Following [9], a good estimation of the parameter θ0 can be obtained by the so-called
an infinite sample consistent estimator θ : RN → Θ which satisfies the following condition

(∀θ)(θ ∈ Θ →
(
µN)

θ({(xn)n∈N : (xn)n∈N ∈ RN & θ((xn)n∈N) = θ}) = 1).

In the present article we consider a particular case of the above-mentioned model when
a vector space of useful signals Θ has the following form:

Θ = {(θ,θ, · · ·) : θ ∈ R}.

For θ ∈ R, a measure µN
θ , defined by

µN
θ = µθ ×µθ ×·· · ,

where µθ is a θ-shift of µ (i.e., µθ(X) = µ(X −θ) for X ∈ B(R)), is called N-power of the
θ-shift of µ on R. It is obvious that µN

θ =
(
µN

)
(θ,θ,···).

It is well known that if the absolute moment of the first order of µ is finite and the mo-
ment of the first order of µ is equal to zero then the sample mean is a consistent estimator of
a parameter θ ∈ R ( in the sense of almost everywhere convergence) for the family (µN

θ )θ∈R.
The proof of this fact uses the well known strong law of large numbers for a stationary (in
narrow sense) random sequence of (see, [11], p. 390). We have a different picture when the
absolute moment of the first order of µ is no defined. In this case we are not able to use the
strong law of large numbers for such stationary (in narrow sense) random sequences.

In this article we consider the problem of a construction of a consistent estimator of
a parameter θ for the family (µN

θ )θ∈R when µ is equivalent to the linear standard Gaus-
sian measure on R (equivalently, the distribution function of ∆1 is strictly increasing and
continuous). Note that such a restriction on µ does not mean that the absolute moment
of the first order of µ always is defined (in this context, one can consider a linear Cauchy
probability measure on R). Similar problem has been considered by [8], and by using the
technique of the theory of uniformly distributed sequences of real numbers on (0,1), has
been demonstrated that the family (µN

θ )θ∈R is strictly separated provided that there exists a
family (Zθ)θ∈R of elements of the σ-algebra S := ∩θ∈Rdom(µθ) such that 1 :

(i) µθ(Zθ) = 1 for θ ∈ R;
(ii) Zθ1 ∩Zθ2 = /0 for all different parameters θ1 and θ2 from R;
(iii) ∪θ∈RZθ = RN .

1By µθ is denoted a usual completion of µθ.
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In the present article we present a new approach for a construction of a consistent es-
timator of a parameter θ ∈ R for the family (µN

θ )θ∈R. This approach allows us to choice a
family (Zθ)θ∈R of Borel measurable subsets of RN such that the above-mentioned condi-
tions (i)− (iii) are fulfilled. In addition, we give a new construction of an infinite sample
consistent estimator of a parameter θ for the family of N-powers of θ-shifts of µ on R in the
sense of [9].

The paper is organized as follows.
In Section 21.2, some auxiliary notions and facts from the theory of uniformly dis-

tributed sequences on (0,1) are considered. In Section 21.3 we construct consistent esti-
mators of a useful signal in linear one-dimensional stochastic model when the distribution
function of the transformed signal is strictly increasing and continuous. In Section 21.4
we consider two simulations of linear one-dimensional stochastic models and demonstrate
whether work our estimators.

21.2 Auxiliary notions and propositions

Definition 21.2.1 ( [10]) A sequence (xk)k∈N of real numbers from the interval (a,b) is
said to be equidistributed or uniformly distributed on an interval (a,b) if for any subinterval
[c,d] of (a,b) we have

lim
n→∞

n−1#({x1,x2, · · · ,xn}∩ [c,d]) = (b−a)−1(d − c),

where # denotes a counting measure.

Now let X be a compact Polish space and µ be a probability Borel measure on X . Let
R (X) be a space of all bounded continuous measurable functions defined on X .

Definition 21.2.2 A sequence (xk)k∈N of elements of X is said to be µ-equidistributed or
µ-uniformly distributed on the X if for every f ∈ R (X) we have

lim
n→∞

n−1
n

∑
k=1

f (xk) =

∫
X

f dµ.

Lemma 21.2.2 ( [10], Lemma 2.1, p. 199) Let f ∈ R (X). Then, for µN-almost every
sequences (xk)k∈N ∈ XN , we have

lim
n→∞

n−1
n

∑
k=1

f (xk) =
∫

X
f dµ.

Lemma 21.2.3 ( [10], pp. 199-201) Let S be a set of all µ-equidistributed sequences on X.
Then we have µN(S) = 1.

Corollary 21.2.1 Let ℓ1 be a Lebesgue measure on (0,1). Let D be a set of all ℓ1-
equidistributed sequences on (0,1). Then we have ℓN

1 (D) = 1.
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Definition 21.2.3 Let µ be a probability Borel measure on R and F be its corresponding
distribution function. A sequence (xk)k∈N of elements of R is said to be µ-equidistributed
or µ-uniformly distributed on R if for every interval [a,b](−∞ ≤ a < b ≤+∞) we have

lim
n→∞

n−1#([a,b]∩{x1, · · · ,xn}) = F(b)−F(a).

Lemma 21.2.4 Let (xk)k∈N be ℓ1-equidistributed sequence on (0,1), F be a strictly in-
creasing continuous distribution function on R and p be a Borel probability measure on R
defined by F. Then (F−1(xk))k∈N is p-equidistributed on R.
Proof. We have

lim
n→∞

n−1#([a,b]∩{F−1(x1), · · · ,F−1(xn)}) =

lim
n→∞

n−1#([F(a),F(b)]∩{x1, · · · ,xn}) = F(b)−F(a). �

Corollary 21.2.2 Let F be a strictly increasing continuous distribution function on R and
p be a Borel probability measure on R defined by F. Then for a set DF ⊂ RN of all p-
equidistributed sequences on R we have :

(i) DF = {(F−1(xk))k∈N : (xk)k∈N ∈ D};
(ii) pN(DF) = 1.

Let (µN
θ )θ∈R be the family of N-powers of θ-shifts of µ on R.

Definition 21.2.4 A Borel measurable function Tn : Rn → R (n ∈ N) is called a consistent
estimator of a parameter θ (in the sense of everywhere convergence) for the family (µN

θ )θ∈R
if the following condition

µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & lim

n→∞
Tn(x1, · · · ,xn) = θ}) = 1

holds for each θ ∈ R.

Definition 21.2.5 A Borel measurable function Tn : Rn → R (n∈N) is called a consistent es-
timator of a parameter θ (in the sense of convergence in probability) for the family (µN

θ )θ∈R
if for every ε > 0 and θ ∈ R the following condition

lim
n→∞

µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & |Tn(x1, · · · ,xn)−θ|> ε}) = 0

holds.

Definition 21.2.6 A Borel measurable function Tn : Rn → R (n ∈ N) is called a consistent
estimator of a parameter θ (in the sense of convergence in distribution ) for the family
(µN

θ )θ∈R if for every continuous bounded real valued function f on R the following condition

lim
n→∞

∫
RN

f (Tn(x1, · · · ,xn))dµN
θ ((xk)k∈N) = f (θ)

holds.

Remark 21.2.1 Following [11] (see, Theorem 2, p. 272), for the family (µN
θ )θ∈R we have:
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(a) an existence of a consistent estimator of a parameter θ in the sense of everywhere
convergence implies an existence of a consistent estimator of a parameter θ in the sense of
convergence in probability;

(b) an existence of a consistent estimator of a parameter θ in the sense of convergence
in probability implies an existence of a consistent estimator of a parameter θ in the sense of
convergence in distribution.

Definition 21.2.7 Following [9], the family (µN
θ )θ∈R is called strictly separated if there exists

a family (Zθ)θ∈R of Borel subsets of RN such that
(i) µN

θ (Zθ) = 1 for θ ∈ R;
(ii) Zθ1 ∩Zθ2 = /0 for all different parameters θ1 and θ2 from R.
(iii) ∪θ∈RZθ = RN .

Definition 21.2.8 Following [9], a Borel measurable function T : RN → R is called an infi-
nite sample estimator of a parameter θ for the family (µN

θ )θ∈R if the following condition

(∀θ)(θ ∈ R → µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & T ((xk)k∈N) = θ}) = 1)

holds.

Remark 21.2.2 Note that an existence of an infinite sample estimator of a parameter θ for
the family (µN

θ )θ∈R implies that the family (µN
θ )θ∈R is strictly separated. Indeed, if we set

Zθ = {(xk)k∈N : (xk)k∈N ∈ RN & T ((xk)k∈N) = θ} for θ ∈ R, then all conditions in Definition
2.7 will be satisfied.

In the sequel we will need the well known fact from the probability theory (see, for
example, [11], p. 390).

Lemma 21.2.5 (The strong law of large numbers) Let X1,X2, ... be an sequence of inde-
pendent equally distributed random variables defined on the probability space (Ω,F ,P).
If these random variables have a finite expectation m (i.e., E(X1) = E(X2) = ...= m < ∞),
then the following condition

P({ω : lim
n→∞

n−1
n

∑
k=1

Xk(ω) = m}) = 1

holds.

21.3 Main results

Theorem 21.3.1 Let F be a strictly increasing continuous distribution function on R and let
µ be a Borel probability measure on R defined by F. For θ ∈ R, we set Fθ(x) = F(x−θ)(x ∈
R) and denote by µθ a Borel probability measure on R defined by Fθ( obviously, it is an
equivalent definition of the θ-shift of µ). Then a function Tn : Rn → R, defined by

Tn(x1, · · · ,xn) =−F−1(n−1#({x1, · · · ,xn}∩ (−∞;0])) (21.3.1)
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for (x1, · · · ,xn) ∈ Rn (n ∈ N), is a consistent estimator of a parameter θ for the family
(µN

θ )θ∈R in the sense of almost everywhere convergence.
Proof. It is clear that Tn is Borel measurable function for n ∈ N. For θ ∈ R, we set

Aθ = {(xk)k∈N : (xk)k∈N is µθ −uni f ormly distributed on R}.

Following Corollary 2.2, we have µN
θ (Aθ) = 1 for θ ∈ R.

For θ ∈ R, we have

µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & lim

n→∞
Tn(x1, · · · ,xn) = θ})

= µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & lim

n→∞
F−1(n−1#({x1, · · · ,xn}∩ (−∞;0])) =−θ})

= µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & lim

n→∞
n−1#({x1, · · · ,xn}∩ (−∞;0]) = F(−θ)})

= µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & lim

n→∞
n−1#({x1, · · · ,xn}∩ (−∞;0]) = Fθ(0)})

≥ µN
θ (Aθ) = 1. �

The following corollaries are simple consequences of Theorem 21.3.1 and Remark
21.2.1.

Corollary 21.3.1 An estimator Tn defined by (3.1) is a consistent estimator of a parameter
θ for the family (µN

θ )θ∈R in the sense of convergence in probability.

Corollary 21.3.2 An estimator Tn defined by (3.1) is a consistent estimator of a parameter
θ for the family (µN

θ )θ∈R in the sense of convergence in distribution.

Remark 21.3.1 Combining the results of Lemma 21.2.5 and Theorem 21.3.1, one can get
the validity of the following condition

µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN &

− lim
n→∞

F−1(n−1#({x1, · · · ,xn}∩ (−∞;0])) = lim
n→∞

n−1
n

∑
k=1

xk = θ}) = 1

for θ ∈ R, when µ is equivalent to the linear standard Gaussian measure on R, the absolute
moment of the first order of µ is finite and the moment of the first order of µ is equal to zero.

Theorem 21.3.2 Let F be a strictly increasing continuous distribution function on R and let
µ be a Borel probability measure on R defined by F. For θ ∈ R, we set Fθ(x) = F(x−θ)(x ∈
R) and denote by µθ a Borel probability measure on R defined by Fθ. Then estimators
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limT̃n := infn supm≥n T̃m and limT̃n := supn infm≥n T̃m are infinite sample consistent estima-
tors of a parameter θ for the family (µN

θ )θ∈R, where T̃n : RN → R is defined by

(∀(xk)k∈N)( (xk)k∈N ∈ RN → T̃n((xk)k∈N) =−F−1(n−1#({x1, · · · ,xn}∩ (−∞;0]))).
(21.3.2)

Proof. Following [11](see, p. 189), the function limT̃n like limT̃n is Borel measurable.
Following Corollary 2.2, we have µN

θ (Aθ) = 1 for θ ∈ R which implies

µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & limT̃n(xk)k∈N = θ})≥

µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & limT̃n(xk)k∈N = limT̃n(xk)k∈N = θ})≥

µN
θ (Aθ) = 1,

where
Aθ = {(xk)k∈N : (xk)k∈N is µθ −uni f ormly distributed on R}

for θ ∈ R.
The latter relation means that the estimator limT̃n is the infinite sample consistent esti-

mators of a parameter θ for the family (µN
θ )θ∈R.

By using an analogous scheme we can prove that the estimator limT̃n has the same
property.

�

Remark 21.3.2 Following Remark 21.2.2 and Theorem 21.3.2, we deduce that the family
(µN

θ )θ∈R is strictly separated by the family of Borel measurable subsets {Zθ : θ ∈ R}. Since
each Borel subset of RN is an element of the σ-algebra S := ∩θ∈Rdom(µθ), we claim that
Theorem 3.2 extends the result of Theorem 21.3.1 obtained by Pantsulaia and Saatashvili
in [8](see, p. 192).

21.4 Simulations of linear one-dimensional stochastic models

Example 21.4.1. Since a sequence of real numbers (π×n− [π×n])n∈N , where [·] denotes
an integer part of a real number, is uniformly distributed on (0,1)(see, [10], Example 2.1,
p.17), we claim that a simulation of a µ(θ,1)-equidistributed sequence (xn)n≤M on R( M is a
”sufficiently large” natural number and depends on a representation quality of the irrational
number π), where µ(θ,1) denotes a linear Gaussian measure on R with parameters (θ,1), can
be obtained by the formula

xn = Φ−1
(θ,1)(π×n− [π×n])

for n ≤ M and θ ∈ R, where Φ(θ,1) denotes a Gaussian distribution function corresponding
to the measure µ(θ,1).
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Indeed, by Lemma 21.2.4, we know that a sequence (xn)n∈N is a sequence of real num-
bers which is Φ(θ,1)-equidistributed on the real axis R.

In our model, θ stands a ”useful signal”.
We set:
(i) n - the number of trials;
(ii) Tn - an estimator defined by the formula (3.1);
(iii) Xn - a sample average.
Below we present some numerical results obtaining by using Microsoft Excel :

Table 21.4.1.

n Tn Xn θ n Tn Xn θ
50 0.994457883 1.146952654 1 550 1.04034032 1.034899747 1
100 1.036433389 1.010190601 1 600 1.036433389 1.043940988 1
150 1.022241387 1.064790041 1 650 1.03313984 1.036321771 1
200 1.036433389 1.037987511 1 700 1.030325691 1.037905202 1
250 1.027893346 1.045296447 1 750 1.033578332 1.03728633 1
300 1.036433389 1.044049728 1 800 1.03108705 1.032630945 1
350 1.030325691 1.034339407 1 850 1.033913784 1.037321098 1
400 1.036433389 1.045181911 1 900 1.031679632 1.026202323 1
450 1.031679632 1.023083495 1 950 1.034178696 1.036669278 1
500 1.036433389 1.044635371 1 1000 1.036433389 1.031131694 1

Notice that results of computations presented in Table 21.4.1 do not contradict to Re-
mark 21.3.1 asserted that Tn = − limn→∞ F−1(n−1#({x1, · · · ,xn}∩ (−∞;0])) and a sample
average Xn = limn→∞ n−1 ∑n

k=1 xk both are consistent estimators of the ”useful signal” θ
whenever a generalized ”white noise” is equivalent to the linear standard Gaussian measure
on R (in our example we have a coincidence), has a finite absolute moment of the first order
and its moment of the first order is equal to zero.

Example 21.4.2. Let µ be a linear Cauchy probability measure on R with distribution
function F(x) =

∫ x
−∞

1
π(1+t2)

dt (x ∈ R). Since a sequence of real numbers (π× n− [π×
n])n∈N is uniformly distributed on (0,1), we claim that a simulation of a µθ-equidistributed
sequence (xn)n≤M( M is a ”sufficiently large” natural number) on R, where µθ denotes θ-
shift measure of µ, can be given by the formula

xn = F−1(π×n− [π×n])+θ

for n ≤ M and θ ∈ R.
In our model, θ stands a ”useful signal”.
We set:
(i) n - the number of trials;
(ii) Tn - an estimator defined by the formula (3.1);
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(iii) Xn - a sample average.
Below we present some numerical results obtaining by using Microsoft Excel and

Cauchy distribution calculator of the high accuracy (see, [12]):

Table 21.4.2.

n Tn Xn θ n Tn Xn θ
50 1.20879235 2.555449288 1 550 1.017284476 41.08688757 1
100 0.939062506 1.331789564 1 600 1.042790358 41.30221291 1
150 1.06489184 71.87525566 1 650 1.014605804 38.1800532 1
200 1.00000000 54.09578271 1 700 1.027297114 38.03399768 1
250 1.06489184 64.59240343 1 750 1.012645994 35.57956117 1
300 1.021166379 54.03265563 1 800 1.015832638 35.25149408 1
350 1.027297114 56.39846672 1 850 1.018652839 33.28723503 1
400 1.031919949 49.58316089 1 900 1.0070058 31.4036155 1
450 1.0070058 44.00842613 1 950 1.023420701 31.27321466 1
500 1.038428014 45.14322051 1 1000 1.012645994 29.73405416 1

On the one hand, the results of computations placed in Table 21.4.2 do not contradict to
the result of Theorem 21.3.1 asserted that Tn is a consistent estimator of the parameter θ= 1.
On the other hand, it seems that a sample average Xn also is a consistent estimator of the
parameter θ = 1, but we know that since the mean and variance of the Cauchy distribution
are not defined, attempts to estimate these parameters will not be successful. For example,
if n samples are taken from a Cauchy distribution, after a calculation of the sample mean,
although the sample values xi will be concentrated about the ”useful signal” θ = 1, the
sample mean will become increasingly variable as more samples are taken, because of the
increased likelihood of encountering sample points with a large absolute value. In fact, the
distribution of the sample mean will be equal to the distribution of the samples themselves;
i.e., the sample mean of a large sample is no better (or worse) an estimator of θ = 1 than
any single observation from the sample.
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Table 1. Φ(x) and ϕ(x)

x ϕ(x) Φ(x) x ϕ(x) Φ(x) x ϕ(x) Φ(x)
0,00 0,3989 0,5000 0,34 0,3765 0,6331 0,68 0,3166 0,7517

01 3989 5040 35 3752 6368 69 3144 7549
02 3988 5080 36 3739 6406 70 3123 7580
03 3988 5120 37 3725 6443 71 3101 7611
04 3986 5160 38 3712 6480 72 3079 7642
05 3984 5199 39 3697 6517 73 3056 7673
06 3982 5239 40 3683 6557 74 3034 7703
07 3980 5279 41 3668 6591 75 3011 7734
08 3977 5319 42 3653 6628 76 2989 7764
09 3973 5359 43 3637 6664 77 2966 7794
10 3970 5398 44 3621 6700 78 2943 7823
11 3965 5438 45 3605 6736 79 2920 7852
12 3961 5478 46 3589 6772 80 2897 7881
13 3956 5517 47 3572 6808 81 2874 7910
14 3951 5557 48 3555 6844 82 2850 7939
15 3945 5596 49 3538 6879 83 2827 7967
16 3939 5636 50 3521 6915 84 2803 7995
17 3932 5675 51 3503 6950 85 2780 8023
18 3925 5714 52 3484 6985 86 2756 8051
19 3918 5753 53 3467 7016 87 2732 8078
20 3910 5793 54 3448 7054 88 2709 8106
21 3902 5832 55 3429 7088 89 2685 8133
22 3894 5871 56 3410 7123 90 2661 8159
23 3885 5910 57 3391 7157 91 2637 8186
24 3876 5948 58 3372 7190 92 2613 8212
25 3867 5987 59 3352 7224 93 2589 8238
26 3357 6026 60 3332 7257 94 2565 8264
27 3847 6064 61 3312 7291 95 2541 8289
28 3836 6103 62 3292 7324 96 2510 8315
29 3825 6141 63 3271 7357 97 2492 8340
30 3814 6179 64 3251 7389 98 2468 8365
31 3802 6217 65 3230 7422 99 2444 8389
32 3790 6265 66 3207 7454 1,00 2420 8413
33 3778 6293 67 3187 7486 1,01 2396 8438
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x ϕ(x) Φ(x) x ϕ(x) Φ(x) x ϕ(x) Φ(x)
1,02 0,2371 0,8461 1,42 0,1456 0,9222 1,82 0,0761 0,9656

03 2347 8485 43 1435 9236 83 0748 9664
04 2323 8508 44 1415 9251 84 0734 9671
05 2299 8531 45 1394 9265 85 0721 9678
06 2275 8554 46 1374 9279 86 0707 9686
07 2251 8577 47 1354 9292 87 0694 9693
08 2227 8599 48 1334 9306 88 0681 9699
09 2203 8621 49 1315 9319 89 0669 9706
10 2179 8648 50 1295 9332 90 0656 9713
11 2155 8665 51 1276 9345 91 0644 9719
12 2131 8686 52 1257 9357 92 0632 9729
13 2107 8708 53 1238 9370 93 0620 9732
14 2083 8729 54 1219 9382 94 0608 9738
15 2059 8749 55 1200 9394 95 0596 9744
16 2036 8770 56 1182 9406 96 0584 9750
17 2012 9790 57 1163 9418 97 0573 9756
18 1989 8810 58 1145 9429 98 0562 9761
19 1965 8820 59 1127 9441 99 0551 9767
20 1942 8849 60 1109 9452 2,00 0540 9772
21 1919 8869 61 1092 9463 02 0519 9783
22 1895 8888 62 1074 9474 04 0498 9793
23 1872 8907 63 1057 9484 06 0478 9803
24 1849 8925 64 1040 9495 08 0459 9812
25 1826 8944 65 1023 9505 10 0440 9821
26 1804 8962 66 1006 9515 12 0422 9830
27 1881 8980 67 0989 9525 14 0404 9838
28 1858 8997 68 0973 9535 16 0387 9846
29 1836 9015 69 0957 9545 18 0371 9854
30 1714 9032 70 0940 9554 20 0355 9861
31 1691 9049 71 0925 9564 22 0339 9868
32 1669 9066 72 0909 9573 24 0325 9868
33 1647 9082 73 0893 9583 26 0310 9881
34 1626 9099 74 0878 9591 28 0297 9887
35 1604 9115 75 0863 9599 30 0283 9893
36 1582 9131 76 0848 9608 32 0270 9898
37 1561 9147 77 0833 9616 34 0258 9904
38 1539 9162 78 0818 9625 36 0246 9909
39 1518 9177 79 0804 9633 38 0235 9913
40 1457 9192 80 0790 9641 40 0224 9918
41 1476 9207 81 0775 9649 42 0213 9922
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x ϕ(x) Φ(x) x ϕ(x) Φ(x) x ϕ(x) Φ(x)
2,44 0,0203 0,9927 2,72 0,0099 0,9967 3,00 0,0043 0,99655

46 0194 9931 74 0093 9969 10 0110 99903
48 0184 9934 76 0088 9971 20 0104 99931
50 0175 9938 78 0084 9973 30 0099 99951
52 0167 9941 80 0079 9974 40 0093 99966
54 0158 9945 82 0075 9976 50 0088 99976
56 0151 9948 84 0071 9977 60 0084 99984
58 0143 9951 86 0067 9979 70 00042 99989
60 0136 9953 88 0063 9980 80 00029 99993
62 0129 9956 90 0060 9981 90 00020 99995
64 0122 9959 92 0056 9982 4,00 00013 99996
66 0116 9961 94 0053 9984 4,50 00001 99999
68 0110 9963 96 0050 9985 5,00 00000 99999
70 0104 9965 98 0047 9986

Table 1 contains the values of density function ϕ and of distribution function Φ of the
standard normally distributed random variable in interval [0,5]. To calculate the values of
ϕ and Φ in other points of the real axis we can use the following formulas:

ϕ(x) =


0, if x > 5;

ϕ(x), if x ∈ [0;5] (we find ϕ(x) from Table 1);
Φ(−x), if x ∈ [−5;0[ (we find ϕ(−x) from Table 1);

0, if x <−5.

Φ(x) =


1, if x > 5;

Φ(x), if x ∈ [0;5] (we find Φ(x) from Table 1);
1−Φ(−x), if x ∈ [−5;0[ (we find Φ(−x) from Table 1);

0, if x <−5.

The value of function Φ−1 is defined by

Φ−1(a) =
{

Φ−1(a), if a ∈ [0,5;1] (we find Φ−1(a) from Table 1);
−Φ−1(1−a), if a ∈]0;0,5[ (we find Φ−1(1−a) from Table 1).
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Table 2. Poisson Distribution

k|λ 0,1 0,2 0,3 0,4 0,5 0,6
0 0,904837 0,818731 0,740818 0,670320 0,606531 0,548812
1 090484 163746 222245 263120 303265 329287
2 004524 016375 033337 053626 075816 098786
3 000151 0011091 003334 007150 012636 019757
4 000004 000055 000250 000715 001580 002964
5 000002 000015 000057 000158 000356
6 000001 000004 000013 000035
7 000001 000003

k|λ 0,7 0,8 0,9 1,0 2,0 3,0
0 0,496585 0,449329 0,406570 0,367879 0,135335 0,049787
1 347610 359463 365913 367879 270671 149361
2 121663 143785 164661 183940 270671 224043
3 028388 038343 049398 061313 180447 224042
4 004968 007669 011115 015328 090224 168031
5 000695 001227 002001 003066 036089 100819
6 000081 000165 000300 000511 012030 050409
7 000008 000019 000039 000073 003437 021604
8 000003 000004 000009 000859 008101
9 000001 000191 002701

10 000038 000810
11 000007 000221
12 000001 000055
13 000013
14 000003
15 000001

k|λ 4,0 5,0 6,0 7,0 8,0 9,0
0 0,018316 0,006738 0,002479 0,000912 0,000335 0,000123
1 073263 033690 014873 006383 002684 001111
2 146525 084224 044618 022341 010735 004993
3 195367 140374 089235 052129 028626 014994
4 195367 175467 133853 091226 057252 033737
5 156293 175467 160623 027717 091604 060727
6 104194 146223 160623 149003 122138 091090
7 059540 104445 137677 149003 139587 117116
8 029770 065278 103258 130377 139587 131756
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k|λ 4,0 5,0 6,0 7,0 8,0 9,0
9 013231 036266 068898 101405 124077 131756
10 005292 018133 041303 070933 099262 118085
11 001925 008242 022529 045171 072190 097020
12 000642 003434 011262 026350 048127 072765
13 000197 001321 005199 014188 029616 050376
14 000056 000472 002228 007094 016924 032384
15 000015 000157 000891 003111 009026 019431
16 000004 000049 000334 001448 004513 010930
17 000001 000014 000118 000596 002124 005786
18 000004 002899 000232 000944 000944
19 000001 000012 000085 000397 001370
20 000004 000030 000159 000617
21 000001 000010 000061 000264
22 000003 000022 000108
23 000001 000008 000042
24 000003 000016
25 000001 000006
26 000002
27 000001
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Tests answers

N a b c d N a b c d N a b g d
1.1.1) + 3.8.4) + 5.3. +

5.4. +
5.5. +
5.6. +
5.7. +
5.8. +

2) + 5) + 6.1.1) +
3) + 6) + 2) +
4) + 3.9. + 3) +
5) + 3.10. + 4) +
6) + 3.11.1) + 6.2.1) +

1.2.1) + 2) + 2) +
2) + 3.12. + 3) +
3) + 3.14. + 6.3.1) +
4) + 3.15. + 2) +

1.3.1) + 3.16. + 3) +
2) + 3.17. + 7.1.1) +

1.4.1) + 3.18 + 2) +
2) + 3.19. + 3) +

1.5.1) + 3.20. + 4) +
2) + 3.21. + 5) +

2.1. + 3.22. + 7.2. +
2.2. + 3.23. + 7.3. +
2.3. + 3.24. + 7.4. +
2.4. + 4.1. + 7.5. +
2.5. + 4.2. + 7.6. +
2.6. + 4.3. + 7.7. +
2.7. + 4.4. + 7.8.1) +
3.1. + 4.5.1) + 2) +
3.2. + 2) + 7.9.1) +
3.3. + 4.6.1) + 2) +
3.4. + 2) + 3) +

3.5.1) + 4.7. + 7.10.1) +
3.5.2) + 4.8.1) + + 2) +

3) + 2) + 8.1.1) +
4) + 5.1.1) + 2) +

3.6. + 2) + 8.2.1) +
3.7 + 3) + 2) +
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N a b c d N a b c d N a b g d
3.8.1) + 4) + 8.3.1) +

2) + 5.2.1) + 2) +
3) + 2) + 8.4.1) +

8.4.2) + 11.3 + 13.11. +
9.1. + 11.4. + 13.12.1) +
9.2.1) + 11.5. + 2) +

2) + 11.6. + 13.13.1) +
9.3.1) + 11.7. + 2) +

2) + 11.8. + 13.14.1) +
9.4. + 11.9. + 2) +
9.4.1) + 11.10. + 13.15.1) +

2) + 12.1. + 2) +
3) + 12.2.1) + 14.1. +

9.5.1) + 2) + 14.2. +
2) + 12.3. + 14.3. +

9.6.1) + 12.4. + 14.4. +
2) + 12.5. + 15.1. +

10.1.1) + 12.6. + 15.2.1) +
3) + 13.1. + 2) +
4) + 13.2. + 3) +

10.2. + 13.3. + 15.3.1) +
10.3. + 13.4. + 2) +
10.4. 13.5. + 3) +
10.5. + 13.6. + 15.3.1) +
10.6. + 13.7. + 2) +
10.7 + 13.8. + 15.4 +
11.1. + 13.9. +
11.2. + 13.10. +
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1. page 45 PROB(x1 : xn; p1 : pn;y1;y2).
2. page 45 POISSON(k;λ;0).
3. page 45 POISSON(k;λ;0).
4. page 47 HYPERGEOMDIST(k; n; a;A).
5. page 47 BINOMDIST(k; n; p; 0).
6. page 47 BINOMDIST(k; n; p; 1).
7. page 49 NORMDIST(x; m; ; 0).
8. page 49 NORMDIST(x; m; ; 1).
9. page 50 EXPONDIST (x;λ;0).
10. page 50 EXPONDIST(x;λ;1).
11. page 57 SUMPRODUCT.
12. page 70 AVERAGE(x1 : xn).
13. page 70 VARP(x1 : xn).
14. page 70 VAR(x1 : xn).
15. page 75 CORREL(x1 : xn;y1 : yn).
16. page 75 COVAR(x1 : xn;y1 : yn).
17. page 79 KURT(x1 : xn)..
18. page 79 SKEW(x1 : xn).
19. page 80 MEDIAN(x1 : xn).
20. page 80 MODE(x1 : xn).
21. page 88 CHIDIST(x;n).
22. page 89 TDIST(x;n;1).
23. page 89 TDIST(x;n;2).
24. page 90 FDIST(x;k1;k2).
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