ON THE TECHNIQUE OF DEFINITION OF THE HEAT MASS EXCHANGE NONSTATIONARY COEFFICIENTS IN WORKINGS

Author O.A. LANCHAVA

Publication date 1982

Journal Bulletin of the Academy of Sciences of the Georgian SSR

Description Summary. The simple formulas for calculation of non-stationary factors heat and mass exchange in workings are offered. The dimensionless potentials, necessary for calculations, of carry of energy and mass are received by a method of mathematical modeling.

Volume 107

Issue 3

Pages 565-568

REFERENCES

- 1. А. А. Дзидзигури, Г. В. Дуганов, Ш. И. Ониани и др. Теплофизические свойства горных пород и методы их определения. Тбилиси, 1966.
- 2. О.А. Л а н ч а в а, Ю.Р. К с о в р е л и. Материалы научно-технической конференции «Проблемы наук о Земле». Тбилиси, 1978.

УДК 622.412:536.244

РАЗРАБОТКА МЕСТОРОЖДЕНИЙ И ОБОГАЩЕНИЕ

О. А. ЛАНЧАВА

ОБ ОДНОМ СПОСОБЕ ОПРЕДЕЛЕНИЯ НЕСТАЦИОНАРНЫХ КОЭФФИЦИЕНТОВ ТЕПЛОМАССООБМЕНА ДЛЯ ГОРНЫХ ВЫРАБОТОК

(Представлено академиком А.А. Дзидзигури 24.11. 1980)

В окружающем выработки горном массиве процессы теплопереноса были смоделированы на электропроводной бумаге с распределенными параметрами, а процессы массопереноса — на блочных электрических сетках электроинтегратора БУСЭ. Параметры электрических сопротивлений аналогов изменяются не только в результате массопереноса в горном массиве, но и вследствие образования охлажденной зоны в нем.

Поперечное сечение горной выработки во всех решенных задачах имеет форму круга, а окружающий ее горный массив в радиальном направлении представлен однородной и изотропной породой.

На основе шахтных наблюдений определены значения реальных величин коэффициента массоотдачи для свежепройденных выработок $(0.05-1.00\times10^{-5}~\rm kr.моль/Дж.м^2.ч)$, использованные при составлении математических аналогов. Величина коэффициента теплоотдачи в практике проветривания очистных и подготовительных выработок меняется в щироких пределах (от 3-4 до 10-12 Вт/м².град), что отражено на моделях. Тепло- и массофизические свойства горных пород, на основе которых составлены математические аналоги, заимствованы из работ [1, 2].

Тепломассообменный процесс на границе системы горный массив — рудничный воздух происходит по закону вынужденной конвекции, т.е. при граничных условиях третьего рода, реализация которых на моделях осуществлена при помощи эквивалентных условий первого рода. Граничные условия первого рода для теплопереноса реализованы с помощью медной шины (ее специальным электропроводным клеем приклеивали вдоль контура с учетом величины коэффициента теплоотдачи). То же условие для массопереноса было реализовано с помощью регулируемого сопротивления. Модель системы для случая теплопереноса представляет собой плоский конденсатор и состоит из трех слоев. Верхний слой — высокоомная электропроводная бумага — модель натуры; средний слой — неполярный диэлектрик, создающий между обкладками нужную электрическую емкость, нижний слой — низкоомная электропроводная бумага — модель начальных условий. В качестве верхнего слоя применена однородная электропроводная бу-

мага с удельным электрическим сопротивлением 1,25 МОм на квадрат, нижний слой имел удельное сопротивление 1500 Ом, диэлектрик представлял собой полиэтилентерефталатную пленку толщиной 5 мкм. С помощью вакуумного насоса на модельном столе удельная электрическая емкость распределялась равномерно по всей ее площади.

Моделирование на электропроводной бумаге осуществлялось путем соблюдения следующего критерия подобия:

$$\frac{R_m C_m l_m^2}{\tau_m} = \frac{c_n \gamma_n l_n^2}{\lambda_n \tau_n} = idem, \tag{1}$$

где R_m – электрическое сопротивление элемента модели; C_m – электрическая емкость элемента модели; l_m – геометрический параметр модели; τ_m – время протекания процесса в модели. Индексом "n" обозначены величины, относящиееся к натуре.

Задавшись временем протекания процесса в натуре и модели и геометрическим масштабом, с помощью выражения (1) подбирались масштабы сопротовления и емкости, на основании которых составлялись электрические аналоги для случая теплопереноса в системе.

Влияние массообмена на теплообмен учитывалось с помощью параметрического критерия, выраженного зависимостью

$$K = \frac{\alpha_m \times 10^6}{\alpha},\tag{2}$$

где $\alpha_{\scriptscriptstyle m}$, α — соответственно, коэффициенты массо- и теплоотдачи.

Отмеченное влияние моделировалось путем соответствующего изменения ширины электропроводной бумаги между шинами нулевого потенциала и граничных условий первого рода (контур выработки). Ширина электропроводной бумаги для каждого конкретного случая с учетом геометрического масштаба определялась по соотношению (2).

При моделировании массопереноса, граничные условия на регулируемые сопротивления, задается с помощью величины

$$R_{con} = \frac{R_N}{\alpha_m R_1},\tag{3}$$

где R_{con} — электрическое сопротивление на границе системы горный массив — рудничный воздух; R_N — масштаб моделирования электрических сопротивлений; R_1 — электрическое сопротивление первого смоделированного узла на модели.

Безразмерные температура и потенциал массопереноса на моделях задается согласно выражениям

$$t_{(\tau,R)} = \frac{t - t_1}{t_0 - t_1}, \qquad \Theta_{(\tau,R)} = \frac{\Theta - \Theta_1}{\Theta_0 - \Theta_1}, \tag{4}$$

где t — текущая температура; Θ — текущий потенциал массопереноса;

 t_1 , t_0 — температура рудничного воздуха и горного массива; Θ_1 , Θ_0 — потенциал массопереноса воздуха и массива.

В результате моделирования получено распределение безразмерных потенциалов переноса энергии и массы в окружающем горном массиве. Из анализа подобных распределений безразмерных потенциалов можно заключить, что степень стабтлизации теплообменного процесса обратно пропорциональна отношению λ/α , а степень стабилизации для массообменного процесса — λ_m/α_m .

Обработка результатов математического моделирования произведена при $R=R_0$, т.е. получено распределение относительных потенциалов переноса массы и энергии на поверхности горных выработок, которое носит нестационарный характер.

Следовательно, нестационарные коэффициенты тепло- и массообмена определяются с помощью простых выражений

$$K_{\tau} = \alpha t(\tau, R_0), \qquad K_{zm} = \alpha_m \Theta(\tau, R_0), \qquad (5)$$

где $t(\tau,R_0)$ и $\Theta(\tau,R_0)$ — соответственно безразмерная температура и безразмерный потенциал стенок горной выработки, в долях единицы. При $\tau=0$, т.е. в начале проветривания, $t(\tau,R_0)=\Theta(\tau,R_0)=1$. В этом случае $K_{\tau}=\alpha$ и $K_{\tau}=\alpha_m$. С течением времени эти коэффициенты неуклонно уменьшаются.

Приведенные выражения могут быть использованы для выполнения теплофизических инженерных расчетов при решении задач по прогнозу и регулированию теплового режима глубоких шахт с учетом влияния охлажденных и осущенных зон вокруг выработок.

Академия наук Грузинской ССР Институт горной механики им. Г.А. Цулукидзе

(Поступило 3.12.1980)

ᲡᲐᲒᲐᲦᲝᲗᲐ ᲓᲐᲛᲣᲨᲐᲕᲔᲒᲐ ᲓᲐ ᲒᲐᲛᲦᲘᲦᲠᲔᲒᲐ

ო. ლანჩამა

ᲐᲠᲐᲡᲢᲐᲪᲘᲝᲜᲐᲠᲣᲚᲘ ᲡᲘᲗᲑᲝᲡᲐ ᲓᲐ ᲛᲐᲡᲘᲡ ᲒᲐᲓᲐᲪᲔᲛᲘᲡ ᲙᲝᲔᲨᲘᲪᲘᲔᲜᲢᲔᲑᲘᲡ ᲒᲐᲜᲡᲐᲖᲦᲕᲠᲘᲡ ᲔᲠᲗᲘ ᲬᲘᲡᲔᲡ ᲨᲔᲡᲑᲡᲑᲖ ᲒᲕᲘᲠᲐᲑᲔᲑᲨᲘ

გვირაბებში სითბოსა და მასის გადაცემის არასტაციონარული კოეფიცენტების გასაანგარიშებლად შემოთავაზებულია უმარტივესი ფორმულები, რომლებიც ეფუძნებიან მათემატიკური მოდელირების მეთოდით მიღებული უგანზომილებო ტემპერატურისა და უგანზომილებო მასაგადატანის პოტენციალის სიდიდეებით სარგებლობას.

EXPLOATATION OF DEPOSITS AND CONCENTRACION

O.A. LANCHAVA

ON THE TECHNIQUE OF DEFINITION OF THE HEAT MASS EXCHANGE NONSTATIONARY COEFFICIENTS IN WORKINGS

Summary

The simple formulas for calculation of non-stationary factors heat and mass exchange in workings are offered. The dimensionless potentials, necessary for calculations, of carry of energy and mass are received by a method of mathematical modeling.

空0%0%0%5%である – ЛИТЕРАТУРА – REFERENCES

- 1. А. А. Дзидзигури, Г. В. Дуганов, Ш. И. Ониани и др. Теплофизические свойства горных пород и методы их определения. Тбилиси, 1966.
- 2. О.А. Ланчава, Ю.Р. Ксоврели. Материалы научно-технической конференции «Проблемы наук о Земле». Тбилиси, 1978.